You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

893 lines
32 KiB
C

/************************************************************************
* Routines for unpacking INT_16, INT_32, FLOAT_32, FLOAT_64,
* STEIM1, STEIM2, GEOSCOPE (24bit and gain ranged), CDSN, SRO
* and DWWSSN encoded data records.
*
* Some routines originated and were borrowed from qlib2 by:
*
* Douglas Neuhauser
* Seismographic Station
* University of California, Berkeley
* doug@seismo.berkeley.edu
*
* Modified by Chad Trabant,
* (previously) ORFEUS/EC-Project MEREDIAN
* (currently) IRIS Data Management Center
*
* modified: 2012.357
************************************************************************/
/*
* Copyright (c) 1996 The Regents of the University of California.
* All Rights Reserved.
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for educational, research and non-profit purposes,
* without fee, and without a written agreement is hereby granted,
* provided that the above copyright notice, this paragraph and the
* following three paragraphs appear in all copies.
*
* Permission to incorporate this software into commercial products may
* be obtained from the Office of Technology Licensing, 2150 Shattuck
* Avenue, Suite 510, Berkeley, CA 94704.
*
* IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY
* FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
* INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND
* ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
* PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
* CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
* UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*/
#include <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include "libmseed.h"
#include "unpackdata.h"
#define MAX12 0x7ff /* maximum 12 bit positive # */
#define MAX14 0x1fff /* maximum 14 bit positive # */
#define MAX16 0x7fff /* maximum 16 bit positive # */
#define MAX24 0x7fffff /* maximum 24 bit positive # */
/* For Steim encodings */
#define X0 pf->w[0].fw
#define XN pf->w[1].fw
/************************************************************************
* msr_unpack_int_16: *
* *
* Unpack int_16 miniSEED data and place in supplied buffer. *
* *
* Return: # of samples returned. *
************************************************************************/
int msr_unpack_int_16
(int16_t *ibuf, /* ptr to input data. */
int num_samples, /* number of data samples in total. */
int req_samples, /* number of data desired by caller. */
int32_t *databuff, /* ptr to unpacked data array. */
int swapflag) /* if data should be swapped. */
{
int nd = 0; /* # of data points in packet. */
int16_t stmp;
if (num_samples < 0) return 0;
if (req_samples < 0) return 0;
for (nd=0; nd<req_samples && nd<num_samples; nd++) {
stmp = ibuf[nd];
if ( swapflag ) ms_gswap2a (&stmp);
databuff[nd] = stmp;
}
return nd;
} /* End of msr_unpack_int_16() */
/************************************************************************
* msr_unpack_int_32: *
* *
* Unpack int_32 miniSEED data and place in supplied buffer. *
* *
* Return: # of samples returned. *
************************************************************************/
int msr_unpack_int_32
(int32_t *ibuf, /* ptr to input data. */
int num_samples, /* number of data samples in total. */
int req_samples, /* number of data desired by caller. */
int32_t *databuff, /* ptr to unpacked data array. */
int swapflag) /* if data should be swapped. */
{
int nd = 0; /* # of data points in packet. */
int32_t itmp;
if (num_samples < 0) return 0;
if (req_samples < 0) return 0;
for (nd=0; nd<req_samples && nd<num_samples; nd++) {
itmp = ibuf[nd];
if ( swapflag) ms_gswap4a (&itmp);
databuff[nd] = itmp;
}
return nd;
} /* End of msr_unpack_int_32() */
/************************************************************************
* msr_unpack_float_32: *
* *
* Unpack float_32 miniSEED data and place in supplied buffer. *
* *
* Return: # of samples returned. *
************************************************************************/
int msr_unpack_float_32
(float *fbuf, /* ptr to input data. */
int num_samples, /* number of data samples in total. */
int req_samples, /* number of data desired by caller. */
float *databuff, /* ptr to unpacked data array. */
int swapflag) /* if data should be swapped. */
{
int nd = 0; /* # of data points in packet. */
float ftmp;
if (num_samples < 0) return 0;
if (req_samples < 0) return 0;
for (nd=0; nd<req_samples && nd<num_samples; nd++) {
memcpy (&ftmp, &fbuf[nd], sizeof(float));
if ( swapflag ) ms_gswap4a (&ftmp);
databuff[nd] = ftmp;
}
return nd;
} /* End of msr_unpack_float_32() */
/************************************************************************
* msr_unpack_float_64: *
* *
* Unpack float_64 miniSEED data and place in supplied buffer. *
* *
* Return: # of samples returned. *
************************************************************************/
int msr_unpack_float_64
(double *fbuf, /* ptr to input data. */
int num_samples, /* number of data samples in total. */
int req_samples, /* number of data desired by caller. */
double *databuff, /* ptr to unpacked data array. */
int swapflag) /* if data should be swapped. */
{
int nd = 0; /* # of data points in packet. */
double dtmp;
if (num_samples < 0) return 0;
if (req_samples < 0) return 0;
for (nd=0; nd<req_samples && nd<num_samples; nd++) {
memcpy (&dtmp, &fbuf[nd], sizeof(double));
if ( swapflag ) ms_gswap8a (&dtmp);
databuff[nd] = dtmp;
}
return nd;
} /* End of msr_unpack_float_64() */
/************************************************************************
* msr_unpack_steim1: *
* *
* Unpack STEIM1 data frames and place in supplied buffer. *
* See the SEED format manual for Steim-1 encoding details. *
* *
* Return: # of samples returned or negative error code. *
************************************************************************/
int msr_unpack_steim1
(FRAME *pf, /* ptr to Steim1 data frames. */
int nbytes, /* number of bytes in all data frames. */
int num_samples, /* number of data samples in all frames.*/
int req_samples, /* number of data desired by caller. */
int32_t *databuff, /* ptr to unpacked data array. */
int32_t *diffbuff, /* ptr to unpacked diff array. */
int32_t *px0, /* return X0, first sample in frame. */
int32_t *pxn, /* return XN, last sample in frame. */
int swapflag, /* if data should be swapped. */
int verbose)
{
int32_t *diff = diffbuff;
int32_t *data = databuff;
int32_t *prev;
int num_data_frames = nbytes / sizeof(FRAME);
int nd = 0; /* # of data points in packet. */
int fn; /* current frame number. */
int wn; /* current work number in the frame. */
int compflag; /* current compression flag. */
int nr, i;
int32_t last_data;
int32_t itmp;
int16_t stmp;
uint32_t ctrl;
if (num_samples < 0) return 0;
if (num_samples == 0) return 0;
if (req_samples < 0) return 0;
/* Extract forward and reverse integration constants in first frame */
*px0 = X0;
*pxn = XN;
if ( swapflag )
{
ms_gswap4a (px0);
ms_gswap4a (pxn);
}
if ( verbose > 2 )
ms_log (1, "%s: forward/reverse integration constants:\nX0: %d XN: %d\n",
UNPACK_SRCNAME, *px0, *pxn);
/* Decode compressed data in each frame */
for (fn = 0; fn < num_data_frames; fn++)
{
ctrl = pf->ctrl;
if ( swapflag ) ms_gswap4a (&ctrl);
for (wn = 0; wn < VALS_PER_FRAME; wn++)
{
if (nd >= num_samples) break;
compflag = (ctrl >> ((VALS_PER_FRAME-wn-1)*2)) & 0x3;
switch (compflag)
{
case STEIM1_SPECIAL_MASK:
/* Headers info -- skip it */
break;
case STEIM1_BYTE_MASK:
/* Next 4 bytes are 4 1-byte differences */
for (i=0; i < 4 && nd < num_samples; i++, nd++)
*diff++ = pf->w[wn].byte[i];
break;
case STEIM1_HALFWORD_MASK:
/* Next 4 bytes are 2 2-byte differences */
for (i=0; i < 2 && nd < num_samples; i++, nd++)
{
if ( swapflag )
{
stmp = pf->w[wn].hw[i];
ms_gswap2a (&stmp);
*diff++ = stmp;
}
else *diff++ = pf->w[wn].hw[i];
}
break;
case STEIM1_FULLWORD_MASK:
/* Next 4 bytes are 1 4-byte difference */
if ( swapflag )
{
itmp = pf->w[wn].fw;
ms_gswap4a (&itmp);
*diff++ = itmp;
}
else *diff++ = pf->w[wn].fw;
nd++;
break;
default:
/* Should NEVER get here */
ms_log (2, "msr_unpack_steim1(%s): invalid compression flag = %d\n",
UNPACK_SRCNAME, compflag);
return MS_STBADCOMPFLAG;
}
}
++pf;
}
/* Test if the number of samples implied by the data frames is the
* same number indicated in the header.
*/
if ( nd != num_samples )
{
ms_log (1, "Warning: msr_unpack_steim1(%s): number of samples indicated in header (%d) does not equal data (%d)\n",
UNPACK_SRCNAME, num_samples, nd);
}
/* For now, assume sample count in header to be correct. */
/* One way of "trimming" data from a block is simply to reduce */
/* the sample count. It is not clear from the documentation */
/* whether this is a valid or not, but it appears to be done */
/* by other program, so we should not complain about its effect. */
nr = req_samples;
/* Compute first value based on last_value from previous buffer. */
/* The two should correspond in all cases EXCEPT for the first */
/* record for each component (because we don't have a valid xn from */
/* a previous record). Although the Steim compression algorithm */
/* defines x(-1) as 0 for the first record, this only works for the */
/* first record created since coldstart of the datalogger, NOT the */
/* first record of an arbitrary starting record. */
/* In all cases, assume x0 is correct, since we don't have x(-1). */
data = databuff;
diff = diffbuff;
last_data = *px0;
if (nr > 0)
*data = *px0;
/* Compute all but first values based on previous value */
prev = data - 1;
while (--nr > 0 && --nd > 0)
last_data = *++data = *++diff + *++prev;
/* If a short count was requested compute the last sample in order */
/* to perform the integrity check comparison */
while (--nd > 0)
last_data = *++diff + last_data;
/* Verify that the last value is identical to xn = rev. int. constant */
if (last_data != *pxn)
{
ms_log (1, "%s: Warning: Data integrity check for Steim-1 failed, last_data=%d, xn=%d\n",
UNPACK_SRCNAME, last_data, *pxn);
}
return ((req_samples < num_samples) ? req_samples : num_samples);
} /* End of msr_unpack_steim1() */
/************************************************************************
* msr_unpack_steim2: *
* *
* Unpack STEIM2 data frames and place in supplied buffer. *
* See the SEED format manual for Steim-2 encoding details. *
* *
* Return: # of samples returned or negative error code. *
************************************************************************/
int msr_unpack_steim2
(FRAME *pf, /* ptr to Steim2 data frames. */
int nbytes, /* number of bytes in all data frames. */
int num_samples, /* number of data samples in all frames.*/
int req_samples, /* number of data desired by caller. */
int32_t *databuff, /* ptr to unpacked data array. */
int32_t *diffbuff, /* ptr to unpacked diff array. */
int32_t *px0, /* return X0, first sample in frame. */
int32_t *pxn, /* return XN, last sample in frame. */
int swapflag, /* if data should be swapped. */
int verbose)
{
int32_t *diff = diffbuff;
int32_t *data = databuff;
int32_t *prev;
int num_data_frames = nbytes / sizeof(FRAME);
int nd = 0; /* # of data points in packet. */
int fn; /* current frame number. */
int wn; /* current work number in the frame. */
int compflag; /* current compression flag. */
int nr, i;
int n, bits, m1, m2;
int32_t last_data;
int32_t val;
int8_t dnib;
uint32_t ctrl;
if (num_samples < 0) return 0;
if (num_samples == 0) return 0;
if (req_samples < 0) return 0;
/* Extract forward and reverse integration constants in first frame.*/
*px0 = X0;
*pxn = XN;
if ( swapflag )
{
ms_gswap4a (px0);
ms_gswap4a (pxn);
}
if ( verbose > 2 )
ms_log (1, "%s: forward/reverse integration constants: X0: %d XN: %d\n",
UNPACK_SRCNAME, *px0, *pxn);
/* Decode compressed data in each frame */
for (fn = 0; fn < num_data_frames; fn++)
{
ctrl = pf->ctrl;
if ( swapflag ) ms_gswap4a (&ctrl);
for (wn = 0; wn < VALS_PER_FRAME; wn++)
{
if (nd >= num_samples) break;
compflag = (ctrl >> ((VALS_PER_FRAME-wn-1)*2)) & 0x3;
switch (compflag)
{
case STEIM2_SPECIAL_MASK:
/* Headers info -- skip it */
break;
case STEIM2_BYTE_MASK:
/* Next 4 bytes are 4 1-byte differences */
for (i=0; i < 4 && nd < num_samples; i++, nd++)
*diff++ = pf->w[wn].byte[i];
break;
case STEIM2_123_MASK:
val = pf->w[wn].fw;
if ( swapflag ) ms_gswap4a (&val);
dnib = val >> 30 & 0x3;
switch (dnib)
{
case 1: /* 1 30-bit difference */
bits = 30; n = 1; m1 = 0x3fffffff; m2 = 0x20000000; break;
case 2: /* 2 15-bit differences */
bits = 15; n = 2; m1 = 0x00007fff; m2 = 0x00004000; break;
case 3: /* 3 10-bit differences */
bits = 10; n = 3; m1 = 0x000003ff; m2 = 0x00000200; break;
default: /* should NEVER get here */
ms_log (2, "msr_unpack_steim2(%s): invalid compflag, dnib, fn, wn = %d, %d, %d, %d\n",
UNPACK_SRCNAME, compflag, dnib, fn, wn);
return MS_STBADCOMPFLAG;
}
/* Uncompress the differences */
for (i=(n-1)*bits; i >= 0 && nd < num_samples; i-=bits, nd++)
{
*diff = (val >> i) & m1;
*diff = (*diff & m2) ? *diff | ~m1 : *diff;
diff++;
}
break;
case STEIM2_567_MASK:
val = pf->w[wn].fw;
if ( swapflag ) ms_gswap4a (&val);
dnib = val >> 30 & 0x3;
switch (dnib)
{
case 0: /* 5 6-bit differences */
bits = 6; n = 5; m1 = 0x0000003f; m2 = 0x00000020; break;
case 1: /* 6 5-bit differences */
bits = 5; n = 6; m1 = 0x0000001f; m2 = 0x00000010; break;
case 2: /* 7 4-bit differences */
bits = 4; n = 7; m1 = 0x0000000f; m2 = 0x00000008; break;
default:
ms_log (2, "msr_unpack_steim2(%s): invalid compflag, dnib, fn, wn = %d, %d, %d, %d\n",
UNPACK_SRCNAME, compflag, dnib, fn, wn);
return MS_STBADCOMPFLAG;
}
/* Uncompress the differences */
for (i=(n-1)*bits; i >= 0 && nd < num_samples; i-=bits, nd++)
{
*diff = (val >> i) & m1;
*diff = (*diff & m2) ? *diff | ~m1 : *diff;
diff++;
}
break;
default:
/* Should NEVER get here */
ms_log (2, "msr_unpack_steim2(%s): invalid compflag, fn, wn = %d, %d, %d - nsamp: %d\n",
UNPACK_SRCNAME, compflag, fn, wn, nd);
return MS_STBADCOMPFLAG;
}
}
++pf;
}
/* Test if the number of samples implied by the data frames is the
* same number indicated in the header.
*/
if ( nd != num_samples )
{
ms_log (1, "Warning: msr_unpack_steim2(%s): number of samples indicated in header (%d) does not equal data (%d)\n",
UNPACK_SRCNAME, num_samples, nd);
}
/* For now, assume sample count in header to be correct. */
/* One way of "trimming" data from a block is simply to reduce */
/* the sample count. It is not clear from the documentation */
/* whether this is a valid or not, but it appears to be done */
/* by other program, so we should not complain about its effect. */
nr = req_samples;
/* Compute first value based on last_value from previous buffer. */
/* The two should correspond in all cases EXCEPT for the first */
/* record for each component (because we don't have a valid xn from */
/* a previous record). Although the Steim compression algorithm */
/* defines x(-1) as 0 for the first record, this only works for the */
/* first record created since coldstart of the datalogger, NOT the */
/* first record of an arbitrary starting record. */
/* In all cases, assume x0 is correct, since we don't have x(-1). */
data = databuff;
diff = diffbuff;
last_data = *px0;
if (nr > 0)
*data = *px0;
/* Compute all but first values based on previous value */
prev = data - 1;
while (--nr > 0 && --nd > 0)
last_data = *++data = *++diff + *++prev;
/* If a short count was requested compute the last sample in order */
/* to perform the integrity check comparison */
while (--nd > 0)
last_data = *++diff + last_data;
/* Verify that the last value is identical to xn = rev. int. constant */
if (last_data != *pxn)
{
ms_log (1, "%s: Warning: Data integrity check for Steim-2 failed, last_data=%d, xn=%d\n",
UNPACK_SRCNAME, last_data, *pxn);
}
return ((req_samples < num_samples) ? req_samples : num_samples);
} /* End of msr_unpack_steim2() */
/* Defines for GEOSCOPE encoding */
#define GEOSCOPE_MANTISSA_MASK 0x0fff /* mask for mantissa */
#define GEOSCOPE_GAIN3_MASK 0x7000 /* mask for gainrange factor */
#define GEOSCOPE_GAIN4_MASK 0xf000 /* mask for gainrange factor */
#define GEOSCOPE_SHIFT 12 /* # bits in mantissa */
/************************************************************************
* msr_unpack_geoscope: *
* *
* Unpack GEOSCOPE gain ranged data (demultiplexed only) encoded *
* miniSEED data and place in supplied buffer. *
* *
* Return: # of samples returned. *
************************************************************************/
int msr_unpack_geoscope
(const char *edata, /* ptr to encoded data. */
int num_samples, /* number of data samples in total. */
int req_samples, /* number of data desired by caller. */
float *databuff, /* ptr to unpacked data array. */
int encoding, /* specific GEOSCOPE encoding type */
int swapflag) /* if data should be swapped. */
{
int nd = 0; /* # of data points in packet. */
int mantissa; /* mantissa from SEED data */
int gainrange; /* gain range factor */
int exponent; /* total exponent */
int k;
uint64_t exp2val;
int16_t sint;
double dsample = 0.0;
union {
uint8_t b[4];
uint32_t i;
} sample32;
if (num_samples < 0) return 0;
if (req_samples < 0) return 0;
/* Make sure we recognize this as a GEOSCOPE encoding format */
if ( encoding != DE_GEOSCOPE24 &&
encoding != DE_GEOSCOPE163 &&
encoding != DE_GEOSCOPE164 )
{
ms_log (2, "msr_unpack_geoscope(%s): unrecognized GEOSCOPE encoding: %d\n",
UNPACK_SRCNAME, encoding);
return -1;
}
for (nd=0; nd<req_samples && nd<num_samples; nd++)
{
switch (encoding)
{
case DE_GEOSCOPE24:
sample32.i = 0;
if ( swapflag )
for (k=0; k < 3; k++)
sample32.b[2-k] = edata[k];
else
for (k=0; k < 3; k++)
sample32.b[1+k] = edata[k];
mantissa = sample32.i;
/* Take 2's complement for mantissa for overflow */
if (mantissa > MAX24)
mantissa -= 2 * (MAX24 + 1);
/* Store */
dsample = (double) mantissa;
break;
case DE_GEOSCOPE163:
memcpy (&sint, edata, sizeof(int16_t));
if ( swapflag ) ms_gswap2a(&sint);
/* Recover mantissa and gain range factor */
mantissa = (sint & GEOSCOPE_MANTISSA_MASK);
gainrange = (sint & GEOSCOPE_GAIN3_MASK) >> GEOSCOPE_SHIFT;
/* Exponent is just gainrange for GEOSCOPE */
exponent = gainrange;
/* Calculate sample as mantissa / 2^exponent */
exp2val = (uint64_t) 1 << exponent;
dsample = ((double) (mantissa-2048)) / exp2val;
break;
case DE_GEOSCOPE164:
memcpy (&sint, edata, sizeof(int16_t));
if ( swapflag ) ms_gswap2a(&sint);
/* Recover mantissa and gain range factor */
mantissa = (sint & GEOSCOPE_MANTISSA_MASK);
gainrange = (sint & GEOSCOPE_GAIN4_MASK) >> GEOSCOPE_SHIFT;
/* Exponent is just gainrange for GEOSCOPE */
exponent = gainrange;
/* Calculate sample as mantissa / 2^exponent */
exp2val = (uint64_t) 1 << exponent;
dsample = ((double) (mantissa-2048)) / exp2val;
break;
}
/* Save sample in output array */
databuff[nd] = (float) dsample;
/* Increment edata pointer depending on size */
switch (encoding)
{
case DE_GEOSCOPE24:
edata += 3;
break;
case DE_GEOSCOPE163:
case DE_GEOSCOPE164:
edata += 2;
break;
}
}
return nd;
} /* End of msr_unpack_geoscope() */
/* Defines for CDSN encoding */
#define CDSN_MANTISSA_MASK 0x3fff /* mask for mantissa */
#define CDSN_GAINRANGE_MASK 0xc000 /* mask for gainrange factor */
#define CDSN_SHIFT 14 /* # bits in mantissa */
/************************************************************************
* msr_unpack_cdsn: *
* *
* Unpack CDSN gain ranged data encoded miniSEED data and place in *
* supplied buffer. *
* *
* Notes from original rdseed routine: *
* CDSN data are compressed according to the formula *
* *
* sample = M * (2 exp G) *
* *
* where *
* sample = seismic data sample *
* M = mantissa; biased mantissa B is written to tape *
* G = exponent of multiplier (i.e. gain range factor); *
* key K is written to tape *
* exp = exponentiation operation *
* B = M + 8191, biased mantissa, written to tape *
* K = key to multiplier exponent, written to tape *
* K may have any of the values 0 - 3, as follows: *
* 0 => G = 0, multiplier = 2 exp 0 = 1 *
* 1 => G = 2, multiplier = 2 exp 2 = 4 *
* 2 => G = 4, multiplier = 2 exp 4 = 16 *
* 3 => G = 7, multiplier = 2 exp 7 = 128 *
* Data are stored on tape in two bytes as follows: *
* fedc ba98 7654 3210 = bit number, power of two *
* KKBB BBBB BBBB BBBB = form of SEED data *
* where K = key to multiplier exponent and B = biased mantissa *
* *
* Masks to recover key to multiplier exponent and biased mantissa *
* from tape are: *
* fedc ba98 7654 3210 = bit number = power of two *
* 0011 1111 1111 1111 = 0x3fff = mask for biased mantissa *
* 1100 0000 0000 0000 = 0xc000 = mask for gain range key *
* *
* Return: # of samples returned. *
************************************************************************/
int msr_unpack_cdsn
(int16_t *edata, /* ptr to encoded data. */
int num_samples, /* number of data samples in total. */
int req_samples, /* number of data desired by caller. */
int32_t *databuff, /* ptr to unpacked data array. */
int swapflag) /* if data should be swapped. */
{
int32_t nd = 0; /* sample count */
int32_t mantissa; /* mantissa */
int32_t gainrange; /* gain range factor */
int32_t mult = -1; /* multiplier for gain range */
uint16_t sint;
int32_t sample;
if (num_samples < 0) return 0;
if (req_samples < 0) return 0;
for (nd=0; nd<req_samples && nd<num_samples; nd++)
{
memcpy (&sint, &edata[nd], sizeof(int16_t));
if ( swapflag ) ms_gswap2a(&sint);
/* Recover mantissa and gain range factor */
mantissa = (sint & CDSN_MANTISSA_MASK);
gainrange = (sint & CDSN_GAINRANGE_MASK) >> CDSN_SHIFT;
/* Determine multiplier from the gain range factor and format definition
* because shift operator is used later, these are powers of two */
if ( gainrange == 0 ) mult = 0;
else if ( gainrange == 1 ) mult = 2;
else if ( gainrange == 2 ) mult = 4;
else if ( gainrange == 3 ) mult = 7;
/* Unbias the mantissa */
mantissa -= MAX14;
/* Calculate sample from mantissa and multiplier using left shift
* mantissa << mult is equivalent to mantissa * (2 exp (mult)) */
sample = (mantissa << mult);
/* Save sample in output array */
databuff[nd] = sample;
}
return nd;
} /* End of msr_unpack_cdsn() */
/* Defines for SRO encoding */
#define SRO_MANTISSA_MASK 0x0fff /* mask for mantissa */
#define SRO_GAINRANGE_MASK 0xf000 /* mask for gainrange factor */
#define SRO_SHIFT 12 /* # bits in mantissa */
/************************************************************************
* msr_unpack_sro: *
* *
* Unpack SRO gain ranged data encoded miniSEED data and place in *
* supplied buffer. *
* *
* Notes from original rdseed routine: *
* SRO data are represented according to the formula *
* *
* sample = M * (b exp {[m * (G + agr)] + ar}) *
* *
* where *
* sample = seismic data sample *
* M = mantissa *
* G = gain range factor *
* b = base to be exponentiated = 2 for SRO *
* m = multiplier = -1 for SRO *
* agr = term to be added to gain range factor = 0 for SRO *
* ar = term to be added to [m * (gr + agr)] = 10 for SRO *
* exp = exponentiation operation *
* Data are stored in two bytes as follows: *
* fedc ba98 7654 3210 = bit number, power of two *
* GGGG MMMM MMMM MMMM = form of SEED data *
* where G = gain range factor and M = mantissa *
* Masks to recover gain range and mantissa: *
* fedc ba98 7654 3210 = bit number = power of two *
* 0000 1111 1111 1111 = 0x0fff = mask for mantissa *
* 1111 0000 0000 0000 = 0xf000 = mask for gain range *
* *
* Return: # of samples returned. *
************************************************************************/
int msr_unpack_sro
(int16_t *edata, /* ptr to encoded data. */
int num_samples, /* number of data samples in total. */
int req_samples, /* number of data desired by caller. */
int32_t *databuff, /* ptr to unpacked data array. */
int swapflag) /* if data should be swapped. */
{
int32_t nd = 0; /* sample count */
int32_t mantissa; /* mantissa */
int32_t gainrange; /* gain range factor */
int32_t add2gr; /* added to gainrage factor */
int32_t mult; /* multiplier for gain range */
int32_t add2result; /* added to multiplied gain rage */
int32_t exponent; /* total exponent */
uint16_t sint;
int32_t sample;
if (num_samples < 0) return 0;
if (req_samples < 0) return 0;
add2gr = 0;
mult = -1;
add2result = 10;
for (nd=0; nd<req_samples && nd<num_samples; nd++)
{
memcpy (&sint, &edata[nd], sizeof(int16_t));
if ( swapflag ) ms_gswap2a(&sint);
/* Recover mantissa and gain range factor */
mantissa = (sint & SRO_MANTISSA_MASK);
gainrange = (sint & SRO_GAINRANGE_MASK) >> SRO_SHIFT;
/* Take 2's complement for mantissa */
if ( mantissa > MAX12 )
mantissa -= 2 * (MAX12 + 1);
/* Calculate exponent, SRO exponent = 0..10 */
exponent = (mult * (gainrange + add2gr)) + add2result;
if ( exponent < 0 || exponent > 10 )
{
ms_log (2, "msr_unpack_sro(%s): SRO gain ranging exponent out of range: %d\n",
UNPACK_SRCNAME, exponent);
return MS_GENERROR;
}
/* Calculate sample as mantissa * 2^exponent */
sample = mantissa * ( (uint64_t) 1 << exponent );
/* Save sample in output array */
databuff[nd] = sample;
}
return nd;
} /* End of msr_unpack_sro() */
/************************************************************************
* msr_unpack_dwwssn: *
* *
* Unpack DWWSSN encoded miniSEED data and place in supplied buffer. *
* *
* Return: # of samples returned. *
************************************************************************/
int msr_unpack_dwwssn
(int16_t *edata, /* ptr to encoded data. */
int num_samples, /* number of data samples in total. */
int req_samples, /* number of data desired by caller. */
int32_t *databuff, /* ptr to unpacked data array. */
int swapflag) /* if data should be swapped. */
{
int32_t nd = 0; /* sample count */
int32_t sample;
uint16_t sint;
if (num_samples < 0) return 0;
if (req_samples < 0) return 0;
for (nd=0; nd<req_samples && nd<num_samples; nd++)
{
memcpy (&sint, &edata[nd], sizeof(uint16_t));
if ( swapflag ) ms_gswap2a(&sint);
sample = (int32_t) sint;
/* Take 2's complement for sample */
if ( sample > MAX16 )
sample -= 2 * (MAX16 + 1);
/* Save sample in output array */
databuff[nd] = sample;
}
return nd;
} /* End of msr_unpack_dwwssn() */