/*************************************************************************** * * Routines to parse Mini-SEED. * * Written by Chad Trabant * IRIS Data Management Center * * modified: 2013.050 ***************************************************************************/ #include #include #include #include #include #include "libmseed.h" /********************************************************************** * msr_parse: * * This routine will attempt to parse (detect and unpack) a Mini-SEED * record from a specified memory buffer and populate a supplied * MSRecord structure. * * If reclen is less than or equal to 0 the length of record is * automatically detected otherwise reclen should be the correct * record length. * * For auto detection of record length the record should include a * 1000 blockette or be followed by another record header in the * buffer. * * dataflag will be passed directly to msr_unpack(). * * Return values: * 0 : Success, populates the supplied MSRecord. * >0 : Data record detected but not enough data is present, the * return value is a hint of how many more bytes are needed. * <0 : libmseed error code (listed in libmseed.h) is returned. *********************************************************************/ int msr_parse ( char *record, int recbuflen, MSRecord **ppmsr, int reclen, flag dataflag, flag verbose ) { int detlen = 0; int retcode = 0; if ( ! ppmsr ) return MS_GENERROR; if ( ! record ) return MS_GENERROR; /* Sanity check: record length cannot be larger than buffer */ if ( reclen > 0 && reclen > recbuflen ) { ms_log (2, "ms_parse() Record length (%d) cannot be larger than buffer (%d)\n", reclen, recbuflen); return MS_GENERROR; } /* Autodetect the record length */ if ( reclen <= 0 ) { detlen = ms_detect (record, recbuflen); /* No data record detected */ if ( detlen < 0 ) { return MS_NOTSEED; } /* Found record but could not determine length */ if ( detlen == 0 ) { return MINRECLEN; } if ( verbose > 2 ) { ms_log (1, "Detected record length of %d bytes\n", detlen); } reclen = detlen; } /* Check that record length is in supported range */ if ( reclen < MINRECLEN || reclen > MAXRECLEN ) { ms_log (2, "Record length is out of range: %d (allowed: %d to %d)\n", reclen, MINRECLEN, MAXRECLEN); return MS_OUTOFRANGE; } /* Check if more data is required, return hint */ if ( reclen > recbuflen ) { if ( verbose > 2 ) ms_log (1, "Detected %d byte record, need %d more bytes\n", reclen, (reclen - recbuflen)); return (reclen - recbuflen); } /* Unpack record */ if ( (retcode = msr_unpack (record, reclen, ppmsr, dataflag, verbose)) != MS_NOERROR ) { msr_free (ppmsr); return retcode; } return MS_NOERROR; } /* End of msr_parse() */ /********************************************************************** * msr_parse_selection: * * This routine wraps msr_parse() to parse and return the first record * from a memory buffer that matches optional Selections. If the * selections pointer is NULL the effect is to search the buffer for * the first parsable record. * * The offset value specifies the starting offset in the buffer and, * on success, the offset in the buffer to record parsed. * * The caller should manage the value of the offset in two ways: * * 1) on subsequent calls after a record has been parsed the caller * should increment the offset by the record length returned or * properly manipulate the record buffer pointer, buffer length and * offset to the same effect. * * 2) when the end of the buffer is reached MS_GENERROR (-1) is * returned, the caller should check the offset value against the * record buffer length to determine when the entire buffer has been * searched. * * Return values: same as msr_parse() except that MS_GENERROR is * returned when end-of-buffer is reached. *********************************************************************/ int msr_parse_selection ( char *recbuf, int recbuflen, int64_t *offset, MSRecord **ppmsr, int reclen, Selections *selections, flag dataflag, flag verbose ) { int retval = MS_GENERROR; int unpackretval; flag dataswapflag = 0; flag bigendianhost = ms_bigendianhost(); if ( ! ppmsr ) return MS_GENERROR; if ( ! recbuf ) return MS_GENERROR; if ( ! offset ) return MS_GENERROR; while ( *offset < recbuflen ) { retval = msr_parse (recbuf+*offset, recbuflen-*offset, ppmsr, reclen, 0, verbose); if ( retval ) { if ( verbose ) ms_log (2, "Error parsing record at offset %lld\n", *offset); *offset += MINRECLEN; } else { if ( selections && ! msr_matchselect (selections, *ppmsr, NULL) ) { *offset += (*ppmsr)->reclen; retval = MS_GENERROR; } else { if ( dataflag ) { /* If BE host and LE data need swapping */ if ( bigendianhost && (*ppmsr)->byteorder == 0 ) dataswapflag = 1; /* If LE host and BE data (or bad byte order value) need swapping */ else if ( !bigendianhost && (*ppmsr)->byteorder > 0 ) dataswapflag = 1; unpackretval = msr_unpack_data (*ppmsr, dataswapflag, verbose); if ( unpackretval < 0 ) return unpackretval; else (*ppmsr)->numsamples = unpackretval; } break; } } } return retval; } /* End of msr_parse_selection() */ /******************************************************************** * ms_detect: * * Determine SEED data record length with the following steps: * * 1) determine that the buffer contains a SEED data record by * verifying known signatures (fields with known limited values) * * 2) search the record up to recbuflen bytes for a 1000 blockette. * * 3) If no blockette 1000 is found search at MINRECLEN-byte offsets * for the fixed section of the next header or blank/noise record, * thereby implying the record length. * * Returns: * -1 : data record not detected or error * 0 : data record detected but could not determine length * >0 : size of the record in bytes *********************************************************************/ int ms_detect ( const char *record, int recbuflen ) { uint16_t blkt_offset; /* Byte offset for next blockette */ uint8_t swapflag = 0; /* Byte swapping flag */ uint8_t foundlen = 0; /* Found record length */ int32_t reclen = -1; /* Size of record in bytes */ uint16_t blkt_type; uint16_t next_blkt; struct fsdh_s *fsdh; struct blkt_1000_s *blkt_1000; const char *nextfsdh; /* Buffer must be at least 48 bytes (the fixed section) */ if ( recbuflen < 48 ) return -1; /* Check for valid fixed section of header */ if ( ! MS_ISVALIDHEADER(record) ) return -1; fsdh = (struct fsdh_s *) record; /* Check to see if byte swapping is needed by checking for sane year and day */ if ( ! MS_ISVALIDYEARDAY(fsdh->start_time.year, fsdh->start_time.day) ) swapflag = 1; blkt_offset = fsdh->blockette_offset; /* Swap order of blkt_offset if needed */ if ( swapflag ) ms_gswap2 (&blkt_offset); /* Loop through blockettes as long as number is non-zero and viable */ while ( blkt_offset != 0 && blkt_offset <= recbuflen ) { memcpy (&blkt_type, record + blkt_offset, 2); memcpy (&next_blkt, record + blkt_offset + 2, 2); if ( swapflag ) { ms_gswap2 (&blkt_type); ms_gswap2 (&next_blkt); } /* Found a 1000 blockette, not truncated */ if ( blkt_type == 1000 && (int)(blkt_offset + 4 + sizeof(struct blkt_1000_s)) <= recbuflen ) { blkt_1000 = (struct blkt_1000_s *) (record + blkt_offset + 4); foundlen = 1; /* Calculate record size in bytes as 2^(blkt_1000->reclen) */ reclen = (unsigned int) 1 << blkt_1000->reclen; break; } /* Saftey check for invalid offset */ if ( next_blkt != 0 && next_blkt < blkt_offset ) { ms_log (2, "Invalid blockette offset (%d) less than current offset (%d)\n", next_blkt, blkt_offset); return -1; } blkt_offset = next_blkt; } /* If record length was not determined by a 1000 blockette scan the buffer * and search for the next record */ if ( reclen == -1 ) { nextfsdh = record + MINRECLEN; /* Check for record header or blank/noise record at MINRECLEN byte offsets */ while ( ((nextfsdh - record) + 48) < recbuflen ) { if ( MS_ISVALIDHEADER(nextfsdh) || MS_ISVALIDBLANK(nextfsdh) ) { foundlen = 1; reclen = nextfsdh - record; break; } nextfsdh += MINRECLEN; } } if ( ! foundlen ) return 0; else return reclen; } /* End of ms_detect() */ /*************************************************************************** * ms_parse_raw: * * Parse and verify a SEED data record header (fixed section and * blockettes) at the lowest level, printing error messages for * invalid header values and optionally print raw header values. The * memory at 'record' is assumed to be a Mini-SEED record. Not every * possible test is performed, common errors and those causing * libmseed parsing to fail should be detected. * * The 'details' argument is interpreted as follows: * * details: * 0 = only print error messages for invalid header fields * 1 = print basic fields in addition to invalid field errors * 2 = print all fields in addition to invalid field errors * * The 'swapflag' argument is interpreted as follows: * * swapflag: * 1 = swap multibyte quantities * 0 = do no swapping * -1 = autodetect byte order using year test, swap if needed * * Any byte swapping performed by this routine is applied directly to * the memory reference by the record pointer. * * This routine is primarily intended to diagnose invalid Mini-SEED headers. * * Returns 0 when no errors were detected or a positive count of * errors detected. ***************************************************************************/ int ms_parse_raw ( char *record, int maxreclen, flag details, flag swapflag ) { struct fsdh_s *fsdh; double nomsamprate; char srcname[50]; char *X; char b; int retval = 0; int b1000encoding = -1; int b1000reclen = -1; int endofblockettes = -1; int idx; if ( ! record ) return 1; /* Generate a source name string */ srcname[0] = '\0'; ms_recsrcname (record, srcname, 1); fsdh = (struct fsdh_s *) record; /* Check to see if byte swapping is needed by testing the year and day */ if ( swapflag == -1 && ! MS_ISVALIDYEARDAY(fsdh->start_time.year, fsdh->start_time.day) ) swapflag = 1; else swapflag = 0; if ( details > 1 ) { if ( swapflag == 1 ) ms_log (0, "Swapping multi-byte quantities in header\n"); else ms_log (0, "Not swapping multi-byte quantities in header\n"); } /* Swap byte order */ if ( swapflag ) { MS_SWAPBTIME (&fsdh->start_time); ms_gswap2a (&fsdh->numsamples); ms_gswap2a (&fsdh->samprate_fact); ms_gswap2a (&fsdh->samprate_mult); ms_gswap4a (&fsdh->time_correct); ms_gswap2a (&fsdh->data_offset); ms_gswap2a (&fsdh->blockette_offset); } /* Validate fixed section header fields */ X = record; /* Pointer of convenience */ /* Check record sequence number, 6 ASCII digits */ if ( ! isdigit((unsigned char) *(X)) || ! isdigit ((unsigned char) *(X+1)) || ! isdigit((unsigned char) *(X+2)) || ! isdigit ((unsigned char) *(X+3)) || ! isdigit((unsigned char) *(X+4)) || ! isdigit ((unsigned char) *(X+5)) ) { ms_log (2, "%s: Invalid sequence number: '%c%c%c%c%c%c'\n", srcname, X, X+1, X+2, X+3, X+4, X+5); retval++; } /* Check header/quality indicator */ if ( ! MS_ISDATAINDICATOR(*(X+6)) ) { ms_log (2, "%s: Invalid header indicator (DRQM): '%c'\n", srcname, X+6); retval++; } /* Check reserved byte, space or NULL */ if ( ! (*(X+7) == ' ' || *(X+7) == '\0') ) { ms_log (2, "%s: Invalid fixed section reserved byte (Space): '%c'\n", srcname, X+7); retval++; } /* Check station code, 5 alphanumerics or spaces */ if ( ! (isalnum((unsigned char) *(X+8)) || *(X+8) == ' ') || ! (isalnum((unsigned char) *(X+9)) || *(X+9) == ' ') || ! (isalnum((unsigned char) *(X+10)) || *(X+10) == ' ') || ! (isalnum((unsigned char) *(X+11)) || *(X+11) == ' ') || ! (isalnum((unsigned char) *(X+12)) || *(X+12) == ' ') ) { ms_log (2, "%s: Invalid station code: '%c%c%c%c%c'\n", srcname, X+8, X+9, X+10, X+11, X+12); retval++; } /* Check location ID, 2 alphanumerics or spaces */ if ( ! (isalnum((unsigned char) *(X+13)) || *(X+13) == ' ') || ! (isalnum((unsigned char) *(X+14)) || *(X+14) == ' ') ) { ms_log (2, "%s: Invalid location ID: '%c%c'\n", srcname, X+13, X+14); retval++; } /* Check channel codes, 3 alphanumerics or spaces */ if ( ! (isalnum((unsigned char) *(X+15)) || *(X+15) == ' ') || ! (isalnum((unsigned char) *(X+16)) || *(X+16) == ' ') || ! (isalnum((unsigned char) *(X+17)) || *(X+17) == ' ') ) { ms_log (2, "%s: Invalid channel codes: '%c%c%c'\n", srcname, X+15, X+16, X+17); retval++; } /* Check network code, 2 alphanumerics or spaces */ if ( ! (isalnum((unsigned char) *(X+18)) || *(X+18) == ' ') || ! (isalnum((unsigned char) *(X+19)) || *(X+19) == ' ') ) { ms_log (2, "%s: Invalid network code: '%c%c'\n", srcname, X+18, X+19); retval++; } /* Check start time fields */ if ( fsdh->start_time.year < 1900 || fsdh->start_time.year > 2100 ) { ms_log (2, "%s: Unlikely start year (1900-2100): '%d'\n", srcname, fsdh->start_time.year); retval++; } if ( fsdh->start_time.day < 1 || fsdh->start_time.day > 366 ) { ms_log (2, "%s: Invalid start day (1-366): '%d'\n", srcname, fsdh->start_time.day); retval++; } if ( fsdh->start_time.hour > 23 ) { ms_log (2, "%s: Invalid start hour (0-23): '%d'\n", srcname, fsdh->start_time.hour); retval++; } if ( fsdh->start_time.min > 59 ) { ms_log (2, "%s: Invalid start minute (0-59): '%d'\n", srcname, fsdh->start_time.min); retval++; } if ( fsdh->start_time.sec > 60 ) { ms_log (2, "%s: Invalid start second (0-60): '%d'\n", srcname, fsdh->start_time.sec); retval++; } if ( fsdh->start_time.fract > 9999 ) { ms_log (2, "%s: Invalid start fractional seconds (0-9999): '%d'\n", srcname, fsdh->start_time.fract); retval++; } /* Check number of samples, max samples in 4096-byte Steim-2 encoded record: 6601 */ if ( fsdh->numsamples > 20000 ) { ms_log (2, "%s: Unlikely number of samples (>20000): '%d'\n", srcname, fsdh->numsamples); retval++; } /* Sanity check that there is space for blockettes when both data and blockettes are present */ if ( fsdh->numsamples > 0 && fsdh->numblockettes > 0 && fsdh->data_offset <= fsdh->blockette_offset ) { ms_log (2, "%s: No space for %d blockettes, data offset: %d, blockette offset: %d\n", srcname, fsdh->numblockettes, fsdh->data_offset, fsdh->blockette_offset); retval++; } /* Print raw header details */ if ( details >= 1 ) { /* Determine nominal sample rate */ nomsamprate = ms_nomsamprate (fsdh->samprate_fact, fsdh->samprate_mult); /* Print header values */ ms_log (0, "RECORD -- %s\n", srcname); ms_log (0, " sequence number: '%c%c%c%c%c%c'\n", fsdh->sequence_number[0], fsdh->sequence_number[1], fsdh->sequence_number[2], fsdh->sequence_number[3], fsdh->sequence_number[4], fsdh->sequence_number[5]); ms_log (0, " data quality indicator: '%c'\n", fsdh->dataquality); if ( details > 0 ) ms_log (0, " reserved: '%c'\n", fsdh->reserved); ms_log (0, " station code: '%c%c%c%c%c'\n", fsdh->station[0], fsdh->station[1], fsdh->station[2], fsdh->station[3], fsdh->station[4]); ms_log (0, " location ID: '%c%c'\n", fsdh->location[0], fsdh->location[1]); ms_log (0, " channel codes: '%c%c%c'\n", fsdh->channel[0], fsdh->channel[1], fsdh->channel[2]); ms_log (0, " network code: '%c%c'\n", fsdh->network[0], fsdh->network[1]); ms_log (0, " start time: %d,%d,%d:%d:%d.%04d (unused: %d)\n", fsdh->start_time.year, fsdh->start_time.day, fsdh->start_time.hour, fsdh->start_time.min, fsdh->start_time.sec, fsdh->start_time.fract, fsdh->start_time.unused); ms_log (0, " number of samples: %d\n", fsdh->numsamples); ms_log (0, " sample rate factor: %d (%.10g samples per second)\n", fsdh->samprate_fact, nomsamprate); ms_log (0, " sample rate multiplier: %d\n", fsdh->samprate_mult); /* Print flag details if requested */ if ( details > 1 ) { /* Activity flags */ b = fsdh->act_flags; ms_log (0, " activity flags: [%u%u%u%u%u%u%u%u] 8 bits\n", bit(b,0x01), bit(b,0x02), bit(b,0x04), bit(b,0x08), bit(b,0x10), bit(b,0x20), bit(b,0x40), bit(b,0x80)); if ( b & 0x01 ) ms_log (0, " [Bit 0] Calibration signals present\n"); if ( b & 0x02 ) ms_log (0, " [Bit 1] Time correction applied\n"); if ( b & 0x04 ) ms_log (0, " [Bit 2] Beginning of an event, station trigger\n"); if ( b & 0x08 ) ms_log (0, " [Bit 3] End of an event, station detrigger\n"); if ( b & 0x10 ) ms_log (0, " [Bit 4] A positive leap second happened in this record\n"); if ( b & 0x20 ) ms_log (0, " [Bit 5] A negative leap second happened in this record\n"); if ( b & 0x40 ) ms_log (0, " [Bit 6] Event in progress\n"); if ( b & 0x80 ) ms_log (0, " [Bit 7] Undefined bit set\n"); /* I/O and clock flags */ b = fsdh->io_flags; ms_log (0, " I/O and clock flags: [%u%u%u%u%u%u%u%u] 8 bits\n", bit(b,0x01), bit(b,0x02), bit(b,0x04), bit(b,0x08), bit(b,0x10), bit(b,0x20), bit(b,0x40), bit(b,0x80)); if ( b & 0x01 ) ms_log (0, " [Bit 0] Station volume parity error possibly present\n"); if ( b & 0x02 ) ms_log (0, " [Bit 1] Long record read (possibly no problem)\n"); if ( b & 0x04 ) ms_log (0, " [Bit 2] Short record read (record padded)\n"); if ( b & 0x08 ) ms_log (0, " [Bit 3] Start of time series\n"); if ( b & 0x10 ) ms_log (0, " [Bit 4] End of time series\n"); if ( b & 0x20 ) ms_log (0, " [Bit 5] Clock locked\n"); if ( b & 0x40 ) ms_log (0, " [Bit 6] Undefined bit set\n"); if ( b & 0x80 ) ms_log (0, " [Bit 7] Undefined bit set\n"); /* Data quality flags */ b = fsdh->dq_flags; ms_log (0, " data quality flags: [%u%u%u%u%u%u%u%u] 8 bits\n", bit(b,0x01), bit(b,0x02), bit(b,0x04), bit(b,0x08), bit(b,0x10), bit(b,0x20), bit(b,0x40), bit(b,0x80)); if ( b & 0x01 ) ms_log (0, " [Bit 0] Amplifier saturation detected\n"); if ( b & 0x02 ) ms_log (0, " [Bit 1] Digitizer clipping detected\n"); if ( b & 0x04 ) ms_log (0, " [Bit 2] Spikes detected\n"); if ( b & 0x08 ) ms_log (0, " [Bit 3] Glitches detected\n"); if ( b & 0x10 ) ms_log (0, " [Bit 4] Missing/padded data present\n"); if ( b & 0x20 ) ms_log (0, " [Bit 5] Telemetry synchronization error\n"); if ( b & 0x40 ) ms_log (0, " [Bit 6] A digital filter may be charging\n"); if ( b & 0x80 ) ms_log (0, " [Bit 7] Time tag is questionable\n"); } ms_log (0, " number of blockettes: %d\n", fsdh->numblockettes); ms_log (0, " time correction: %ld\n", (long int) fsdh->time_correct); ms_log (0, " data offset: %d\n", fsdh->data_offset); ms_log (0, " first blockette offset: %d\n", fsdh->blockette_offset); } /* Done printing raw header details */ /* Validate and report information in the blockette chain */ if ( fsdh->blockette_offset > 46 && fsdh->blockette_offset < maxreclen ) { int blkt_offset = fsdh->blockette_offset; int blkt_count = 0; int blkt_length; uint16_t blkt_type; uint16_t next_blkt; char *blkt_desc; /* Traverse blockette chain */ while ( blkt_offset != 0 && blkt_offset < maxreclen ) { /* Every blockette has a similar 4 byte header: type and next */ memcpy (&blkt_type, record + blkt_offset, 2); memcpy (&next_blkt, record + blkt_offset+2, 2); if ( swapflag ) { ms_gswap2 (&blkt_type); ms_gswap2 (&next_blkt); } /* Print common header fields */ if ( details >= 1 ) { blkt_desc = ms_blktdesc(blkt_type); ms_log (0, " BLOCKETTE %u: (%s)\n", blkt_type, (blkt_desc) ? blkt_desc : "Unknown"); ms_log (0, " next blockette: %u\n", next_blkt); } blkt_length = ms_blktlen (blkt_type, record + blkt_offset, swapflag); if ( blkt_length == 0 ) { ms_log (2, "%s: Unknown blockette length for type %d\n", srcname, blkt_type); retval++; } /* Track end of blockette chain */ endofblockettes = blkt_offset + blkt_length - 1; /* Sanity check that the blockette is contained in the record */ if ( endofblockettes > maxreclen ) { ms_log (2, "%s: Blockette type %d at offset %d with length %d does not fix in record (%d)\n", srcname, blkt_type, blkt_offset, blkt_length, maxreclen); retval++; break; } if ( blkt_type == 100 ) { struct blkt_100_s *blkt_100 = (struct blkt_100_s *) (record + blkt_offset + 4); if ( swapflag ) ms_gswap4 (&blkt_100->samprate); if ( details >= 1 ) { ms_log (0, " actual sample rate: %.10g\n", blkt_100->samprate); if ( details > 1 ) { b = blkt_100->flags; ms_log (0, " undefined flags: [%u%u%u%u%u%u%u%u] 8 bits\n", bit(b,0x01), bit(b,0x02), bit(b,0x04), bit(b,0x08), bit(b,0x10), bit(b,0x20), bit(b,0x40), bit(b,0x80)); ms_log (0, " reserved bytes (3): %u,%u,%u\n", blkt_100->reserved[0], blkt_100->reserved[1], blkt_100->reserved[2]); } } } else if ( blkt_type == 200 ) { struct blkt_200_s *blkt_200 = (struct blkt_200_s *) (record + blkt_offset + 4); if ( swapflag ) { ms_gswap4 (&blkt_200->amplitude); ms_gswap4 (&blkt_200->period); ms_gswap4 (&blkt_200->background_estimate); MS_SWAPBTIME (&blkt_200->time); } if ( details >= 1 ) { ms_log (0, " signal amplitude: %g\n", blkt_200->amplitude); ms_log (0, " signal period: %g\n", blkt_200->period); ms_log (0, " background estimate: %g\n", blkt_200->background_estimate); if ( details > 1 ) { b = blkt_200->flags; ms_log (0, " event detection flags: [%u%u%u%u%u%u%u%u] 8 bits\n", bit(b,0x01), bit(b,0x02), bit(b,0x04), bit(b,0x08), bit(b,0x10), bit(b,0x20), bit(b,0x40), bit(b,0x80)); if ( b & 0x01 ) ms_log (0, " [Bit 0] 1: Dilatation wave\n"); else ms_log (0, " [Bit 0] 0: Compression wave\n"); if ( b & 0x02 ) ms_log (0, " [Bit 1] 1: Units after deconvolution\n"); else ms_log (0, " [Bit 1] 0: Units are digital counts\n"); if ( b & 0x04 ) ms_log (0, " [Bit 2] Bit 0 is undetermined\n"); ms_log (0, " reserved byte: %u\n", blkt_200->reserved); } ms_log (0, " signal onset time: %d,%d,%d:%d:%d.%04d (unused: %d)\n", blkt_200->time.year, blkt_200->time.day, blkt_200->time.hour, blkt_200->time.min, blkt_200->time.sec, blkt_200->time.fract, blkt_200->time.unused); ms_log (0, " detector name: %.24s\n", blkt_200->detector); } } else if ( blkt_type == 201 ) { struct blkt_201_s *blkt_201 = (struct blkt_201_s *) (record + blkt_offset + 4); if ( swapflag ) { ms_gswap4 (&blkt_201->amplitude); ms_gswap4 (&blkt_201->period); ms_gswap4 (&blkt_201->background_estimate); MS_SWAPBTIME (&blkt_201->time); } if ( details >= 1 ) { ms_log (0, " signal amplitude: %g\n", blkt_201->amplitude); ms_log (0, " signal period: %g\n", blkt_201->period); ms_log (0, " background estimate: %g\n", blkt_201->background_estimate); b = blkt_201->flags; ms_log (0, " event detection flags: [%u%u%u%u%u%u%u%u] 8 bits\n", bit(b,0x01), bit(b,0x02), bit(b,0x04), bit(b,0x08), bit(b,0x10), bit(b,0x20), bit(b,0x40), bit(b,0x80)); if ( b & 0x01 ) ms_log (0, " [Bit 0] 1: Dilation wave\n"); else ms_log (0, " [Bit 0] 0: Compression wave\n"); if ( details > 1 ) ms_log (0, " reserved byte: %u\n", blkt_201->reserved); ms_log (0, " signal onset time: %d,%d,%d:%d:%d.%04d (unused: %d)\n", blkt_201->time.year, blkt_201->time.day, blkt_201->time.hour, blkt_201->time.min, blkt_201->time.sec, blkt_201->time.fract, blkt_201->time.unused); ms_log (0, " SNR values: "); for (idx=0; idx < 6; idx++) ms_log (0, "%u ", blkt_201->snr_values[idx]); ms_log (0, "\n"); ms_log (0, " loopback value: %u\n", blkt_201->loopback); ms_log (0, " pick algorithm: %u\n", blkt_201->pick_algorithm); ms_log (0, " detector name: %.24s\n", blkt_201->detector); } } else if ( blkt_type == 300 ) { struct blkt_300_s *blkt_300 = (struct blkt_300_s *) (record + blkt_offset + 4); if ( swapflag ) { MS_SWAPBTIME (&blkt_300->time); ms_gswap4 (&blkt_300->step_duration); ms_gswap4 (&blkt_300->interval_duration); ms_gswap4 (&blkt_300->amplitude); ms_gswap4 (&blkt_300->reference_amplitude); } if ( details >= 1 ) { ms_log (0, " calibration start time: %d,%d,%d:%d:%d.%04d (unused: %d)\n", blkt_300->time.year, blkt_300->time.day, blkt_300->time.hour, blkt_300->time.min, blkt_300->time.sec, blkt_300->time.fract, blkt_300->time.unused); ms_log (0, " number of calibrations: %u\n", blkt_300->numcalibrations); b = blkt_300->flags; ms_log (0, " calibration flags: [%u%u%u%u%u%u%u%u] 8 bits\n", bit(b,0x01), bit(b,0x02), bit(b,0x04), bit(b,0x08), bit(b,0x10), bit(b,0x20), bit(b,0x40), bit(b,0x80)); if ( b & 0x01 ) ms_log (0, " [Bit 0] First pulse is positive\n"); if ( b & 0x02 ) ms_log (0, " [Bit 1] Calibration's alternate sign\n"); if ( b & 0x04 ) ms_log (0, " [Bit 2] Calibration was automatic\n"); if ( b & 0x08 ) ms_log (0, " [Bit 3] Calibration continued from previous record(s)\n"); ms_log (0, " step duration: %u\n", blkt_300->step_duration); ms_log (0, " interval duration: %u\n", blkt_300->interval_duration); ms_log (0, " signal amplitude: %g\n", blkt_300->amplitude); ms_log (0, " input signal channel: %.3s", blkt_300->input_channel); if ( details > 1 ) ms_log (0, " reserved byte: %u\n", blkt_300->reserved); ms_log (0, " reference amplitude: %u\n", blkt_300->reference_amplitude); ms_log (0, " coupling: %.12s\n", blkt_300->coupling); ms_log (0, " rolloff: %.12s\n", blkt_300->rolloff); } } else if ( blkt_type == 310 ) { struct blkt_310_s *blkt_310 = (struct blkt_310_s *) (record + blkt_offset + 4); if ( swapflag ) { MS_SWAPBTIME (&blkt_310->time); ms_gswap4 (&blkt_310->duration); ms_gswap4 (&blkt_310->period); ms_gswap4 (&blkt_310->amplitude); ms_gswap4 (&blkt_310->reference_amplitude); } if ( details >= 1 ) { ms_log (0, " calibration start time: %d,%d,%d:%d:%d.%04d (unused: %d)\n", blkt_310->time.year, blkt_310->time.day, blkt_310->time.hour, blkt_310->time.min, blkt_310->time.sec, blkt_310->time.fract, blkt_310->time.unused); if ( details > 1 ) ms_log (0, " reserved byte: %u\n", blkt_310->reserved1); b = blkt_310->flags; ms_log (0, " calibration flags: [%u%u%u%u%u%u%u%u] 8 bits\n", bit(b,0x01), bit(b,0x02), bit(b,0x04), bit(b,0x08), bit(b,0x10), bit(b,0x20), bit(b,0x40), bit(b,0x80)); if ( b & 0x04 ) ms_log (0, " [Bit 2] Calibration was automatic\n"); if ( b & 0x08 ) ms_log (0, " [Bit 3] Calibration continued from previous record(s)\n"); if ( b & 0x10 ) ms_log (0, " [Bit 4] Peak-to-peak amplitude\n"); if ( b & 0x20 ) ms_log (0, " [Bit 5] Zero-to-peak amplitude\n"); if ( b & 0x40 ) ms_log (0, " [Bit 6] RMS amplitude\n"); ms_log (0, " calibration duration: %u\n", blkt_310->duration); ms_log (0, " signal period: %g\n", blkt_310->period); ms_log (0, " signal amplitude: %g\n", blkt_310->amplitude); ms_log (0, " input signal channel: %.3s", blkt_310->input_channel); if ( details > 1 ) ms_log (0, " reserved byte: %u\n", blkt_310->reserved2); ms_log (0, " reference amplitude: %u\n", blkt_310->reference_amplitude); ms_log (0, " coupling: %.12s\n", blkt_310->coupling); ms_log (0, " rolloff: %.12s\n", blkt_310->rolloff); } } else if ( blkt_type == 320 ) { struct blkt_320_s *blkt_320 = (struct blkt_320_s *) (record + blkt_offset + 4); if ( swapflag ) { MS_SWAPBTIME (&blkt_320->time); ms_gswap4 (&blkt_320->duration); ms_gswap4 (&blkt_320->ptp_amplitude); ms_gswap4 (&blkt_320->reference_amplitude); } if ( details >= 1 ) { ms_log (0, " calibration start time: %d,%d,%d:%d:%d.%04d (unused: %d)\n", blkt_320->time.year, blkt_320->time.day, blkt_320->time.hour, blkt_320->time.min, blkt_320->time.sec, blkt_320->time.fract, blkt_320->time.unused); if ( details > 1 ) ms_log (0, " reserved byte: %u\n", blkt_320->reserved1); b = blkt_320->flags; ms_log (0, " calibration flags: [%u%u%u%u%u%u%u%u] 8 bits\n", bit(b,0x01), bit(b,0x02), bit(b,0x04), bit(b,0x08), bit(b,0x10), bit(b,0x20), bit(b,0x40), bit(b,0x80)); if ( b & 0x04 ) ms_log (0, " [Bit 2] Calibration was automatic\n"); if ( b & 0x08 ) ms_log (0, " [Bit 3] Calibration continued from previous record(s)\n"); if ( b & 0x10 ) ms_log (0, " [Bit 4] Random amplitudes\n"); ms_log (0, " calibration duration: %u\n", blkt_320->duration); ms_log (0, " peak-to-peak amplitude: %g\n", blkt_320->ptp_amplitude); ms_log (0, " input signal channel: %.3s", blkt_320->input_channel); if ( details > 1 ) ms_log (0, " reserved byte: %u\n", blkt_320->reserved2); ms_log (0, " reference amplitude: %u\n", blkt_320->reference_amplitude); ms_log (0, " coupling: %.12s\n", blkt_320->coupling); ms_log (0, " rolloff: %.12s\n", blkt_320->rolloff); ms_log (0, " noise type: %.8s\n", blkt_320->noise_type); } } else if ( blkt_type == 390 ) { struct blkt_390_s *blkt_390 = (struct blkt_390_s *) (record + blkt_offset + 4); if ( swapflag ) { MS_SWAPBTIME (&blkt_390->time); ms_gswap4 (&blkt_390->duration); ms_gswap4 (&blkt_390->amplitude); } if ( details >= 1 ) { ms_log (0, " calibration start time: %d,%d,%d:%d:%d.%04d (unused: %d)\n", blkt_390->time.year, blkt_390->time.day, blkt_390->time.hour, blkt_390->time.min, blkt_390->time.sec, blkt_390->time.fract, blkt_390->time.unused); if ( details > 1 ) ms_log (0, " reserved byte: %u\n", blkt_390->reserved1); b = blkt_390->flags; ms_log (0, " calibration flags: [%u%u%u%u%u%u%u%u] 8 bits\n", bit(b,0x01), bit(b,0x02), bit(b,0x04), bit(b,0x08), bit(b,0x10), bit(b,0x20), bit(b,0x40), bit(b,0x80)); if ( b & 0x04 ) ms_log (0, " [Bit 2] Calibration was automatic\n"); if ( b & 0x08 ) ms_log (0, " [Bit 3] Calibration continued from previous record(s)\n"); ms_log (0, " calibration duration: %u\n", blkt_390->duration); ms_log (0, " signal amplitude: %g\n", blkt_390->amplitude); ms_log (0, " input signal channel: %.3s", blkt_390->input_channel); if ( details > 1 ) ms_log (0, " reserved byte: %u\n", blkt_390->reserved2); } } else if ( blkt_type == 395 ) { struct blkt_395_s *blkt_395 = (struct blkt_395_s *) (record + blkt_offset + 4); if ( swapflag ) MS_SWAPBTIME (&blkt_395->time); if ( details >= 1 ) { ms_log (0, " calibration end time: %d,%d,%d:%d:%d.%04d (unused: %d)\n", blkt_395->time.year, blkt_395->time.day, blkt_395->time.hour, blkt_395->time.min, blkt_395->time.sec, blkt_395->time.fract, blkt_395->time.unused); if ( details > 1 ) ms_log (0, " reserved bytes (2): %u,%u\n", blkt_395->reserved[0], blkt_395->reserved[1]); } } else if ( blkt_type == 400 ) { struct blkt_400_s *blkt_400 = (struct blkt_400_s *) (record + blkt_offset + 4); if ( swapflag ) { ms_gswap4 (&blkt_400->azimuth); ms_gswap4 (&blkt_400->slowness); ms_gswap4 (&blkt_400->configuration); } if ( details >= 1 ) { ms_log (0, " beam azimuth (degrees): %g\n", blkt_400->azimuth); ms_log (0, " beam slowness (sec/degree): %g\n", blkt_400->slowness); ms_log (0, " configuration: %u\n", blkt_400->configuration); if ( details > 1 ) ms_log (0, " reserved bytes (2): %u,%u\n", blkt_400->reserved[0], blkt_400->reserved[1]); } } else if ( blkt_type == 405 ) { struct blkt_405_s *blkt_405 = (struct blkt_405_s *) (record + blkt_offset + 4); uint16_t firstvalue = blkt_405->delay_values[0]; /* Work on a private copy */ if ( swapflag ) ms_gswap2 (&firstvalue); if ( details >= 1 ) ms_log (0, " first delay value: %u\n", firstvalue); } else if ( blkt_type == 500 ) { struct blkt_500_s *blkt_500 = (struct blkt_500_s *) (record + blkt_offset + 4); if ( swapflag ) { ms_gswap4 (&blkt_500->vco_correction); MS_SWAPBTIME (&blkt_500->time); ms_gswap4 (&blkt_500->exception_count); } if ( details >= 1 ) { ms_log (0, " VCO correction: %g%%\n", blkt_500->vco_correction); ms_log (0, " time of exception: %d,%d,%d:%d:%d.%04d (unused: %d)\n", blkt_500->time.year, blkt_500->time.day, blkt_500->time.hour, blkt_500->time.min, blkt_500->time.sec, blkt_500->time.fract, blkt_500->time.unused); ms_log (0, " usec: %d\n", blkt_500->usec); ms_log (0, " reception quality: %u%%\n", blkt_500->reception_qual); ms_log (0, " exception count: %u\n", blkt_500->exception_count); ms_log (0, " exception type: %.16s\n", blkt_500->exception_type); ms_log (0, " clock model: %.32s\n", blkt_500->clock_model); ms_log (0, " clock status: %.128s\n", blkt_500->clock_status); } } else if ( blkt_type == 1000 ) { struct blkt_1000_s *blkt_1000 = (struct blkt_1000_s *) (record + blkt_offset + 4); char order[40]; /* Calculate record size in bytes as 2^(blkt_1000->rec_len) */ b1000reclen = (unsigned int) 1 << blkt_1000->reclen; /* Big or little endian? */ if (blkt_1000->byteorder == 0) strncpy (order, "Little endian", sizeof(order)-1); else if (blkt_1000->byteorder == 1) strncpy (order, "Big endian", sizeof(order)-1); else strncpy (order, "Unknown value", sizeof(order)-1); if ( details >= 1 ) { ms_log (0, " encoding: %s (val:%u)\n", (char *) ms_encodingstr (blkt_1000->encoding), blkt_1000->encoding); ms_log (0, " byte order: %s (val:%u)\n", order, blkt_1000->byteorder); ms_log (0, " record length: %d (val:%u)\n", b1000reclen, blkt_1000->reclen); if ( details > 1 ) ms_log (0, " reserved byte: %u\n", blkt_1000->reserved); } /* Save encoding format */ b1000encoding = blkt_1000->encoding; /* Sanity check encoding format */ if ( ! (b1000encoding >= 0 && b1000encoding <= 5) && ! (b1000encoding >= 10 && b1000encoding <= 19) && ! (b1000encoding >= 30 && b1000encoding <= 33) ) { ms_log (2, "%s: Blockette 1000 encoding format invalid (0-5,10-19,30-33): %d\n", srcname, b1000encoding); retval++; } /* Sanity check byte order flag */ if ( blkt_1000->byteorder != 0 && blkt_1000->byteorder != 1 ) { ms_log (2, "%s: Blockette 1000 byte order flag invalid (0 or 1): %d\n", srcname, blkt_1000->byteorder); retval++; } } else if ( blkt_type == 1001 ) { struct blkt_1001_s *blkt_1001 = (struct blkt_1001_s *) (record + blkt_offset + 4); if ( details >= 1 ) { ms_log (0, " timing quality: %u%%\n", blkt_1001->timing_qual); ms_log (0, " micro second: %d\n", blkt_1001->usec); if ( details > 1 ) ms_log (0, " reserved byte: %u\n", blkt_1001->reserved); ms_log (0, " frame count: %u\n", blkt_1001->framecnt); } } else if ( blkt_type == 2000 ) { struct blkt_2000_s *blkt_2000 = (struct blkt_2000_s *) (record + blkt_offset + 4); char order[40]; if ( swapflag ) { ms_gswap2 (&blkt_2000->length); ms_gswap2 (&blkt_2000->data_offset); ms_gswap4 (&blkt_2000->recnum); } /* Big or little endian? */ if (blkt_2000->byteorder == 0) strncpy (order, "Little endian", sizeof(order)-1); else if (blkt_2000->byteorder == 1) strncpy (order, "Big endian", sizeof(order)-1); else strncpy (order, "Unknown value", sizeof(order)-1); if ( details >= 1 ) { ms_log (0, " blockette length: %u\n", blkt_2000->length); ms_log (0, " data offset: %u\n", blkt_2000->data_offset); ms_log (0, " record number: %u\n", blkt_2000->recnum); ms_log (0, " byte order: %s (val:%u)\n", order, blkt_2000->byteorder); b = blkt_2000->flags; ms_log (0, " data flags: [%u%u%u%u%u%u%u%u] 8 bits\n", bit(b,0x01), bit(b,0x02), bit(b,0x04), bit(b,0x08), bit(b,0x10), bit(b,0x20), bit(b,0x40), bit(b,0x80)); if ( details > 1 ) { if ( b & 0x01 ) ms_log (0, " [Bit 0] 1: Stream oriented\n"); else ms_log (0, " [Bit 0] 0: Record oriented\n"); if ( b & 0x02 ) ms_log (0, " [Bit 1] 1: Blockette 2000s may NOT be packaged\n"); else ms_log (0, " [Bit 1] 0: Blockette 2000s may be packaged\n"); if ( ! (b & 0x04) && ! (b & 0x08) ) ms_log (0, " [Bits 2-3] 00: Complete blockette\n"); else if ( ! (b & 0x04) && (b & 0x08) ) ms_log (0, " [Bits 2-3] 01: First blockette in span\n"); else if ( (b & 0x04) && (b & 0x08) ) ms_log (0, " [Bits 2-3] 11: Continuation blockette in span\n"); else if ( (b & 0x04) && ! (b & 0x08) ) ms_log (0, " [Bits 2-3] 10: Final blockette in span\n"); if ( ! (b & 0x10) && ! (b & 0x20) ) ms_log (0, " [Bits 4-5] 00: Not file oriented\n"); else if ( ! (b & 0x10) && (b & 0x20) ) ms_log (0, " [Bits 4-5] 01: First blockette of file\n"); else if ( (b & 0x10) && ! (b & 0x20) ) ms_log (0, " [Bits 4-5] 10: Continuation of file\n"); else if ( (b & 0x10) && (b & 0x20) ) ms_log (0, " [Bits 4-5] 11: Last blockette of file\n"); } ms_log (0, " number of headers: %u\n", blkt_2000->numheaders); /* Crude display of the opaque data headers */ if ( details > 1 ) ms_log (0, " headers: %.*s\n", (blkt_2000->data_offset - 15), blkt_2000->payload); } } else { ms_log (2, "%s: Unrecognized blockette type: %d\n", srcname, blkt_type); retval++; } /* Sanity check the next blockette offset */ if ( next_blkt && next_blkt <= endofblockettes ) { ms_log (2, "%s: Next blockette offset (%d) is within current blockette ending at byte %d\n", srcname, next_blkt, endofblockettes); blkt_offset = 0; } else { blkt_offset = next_blkt; } blkt_count++; } /* End of looping through blockettes */ /* Check that the blockette offset is within the maximum record size */ if ( blkt_offset > maxreclen ) { ms_log (2, "%s: Blockette offset (%d) beyond maximum record length (%d)\n", srcname, blkt_offset, maxreclen); retval++; } /* Check that the data and blockette offsets are within the record */ if ( b1000reclen && fsdh->data_offset > b1000reclen ) { ms_log (2, "%s: Data offset (%d) beyond record length (%d)\n", srcname, fsdh->data_offset, b1000reclen); retval++; } if ( b1000reclen && fsdh->blockette_offset > b1000reclen ) { ms_log (2, "%s: Blockette offset (%d) beyond record length (%d)\n", srcname, fsdh->blockette_offset, b1000reclen); retval++; } /* Check that the data offset is beyond the end of the blockettes */ if ( fsdh->numsamples && fsdh->data_offset <= endofblockettes ) { ms_log (2, "%s: Data offset (%d) is within blockette chain (end of blockettes: %d)\n", srcname, fsdh->data_offset, endofblockettes); retval++; } /* Check that the correct number of blockettes were parsed */ if ( fsdh->numblockettes != blkt_count ) { ms_log (2, "%s: Specified number of blockettes (%d) not equal to those parsed (%d)\n", srcname, fsdh->numblockettes, blkt_count); retval++; } } return retval; } /* End of ms_parse_raw() */