[installation] Change to nightly
This commit is contained in:
@ -4,7 +4,7 @@
|
||||
<head>
|
||||
<meta charset="utf-8" /><meta name="viewport" content="width=device-width, initial-scale=1" />
|
||||
|
||||
<title>Glossary — SeisComP Release documentation</title>
|
||||
<title>Glossary — SeisComP Development documentation</title>
|
||||
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
|
||||
<link rel="stylesheet" href="../_static/seiscomp.css" type="text/css" />
|
||||
<link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=72bcf2f2" />
|
||||
@ -12,7 +12,7 @@
|
||||
<link rel="stylesheet" type="text/css" href="../_static/graphviz.css?v=eafc0fe6" />
|
||||
<script type="text/javascript" src="../_static/seiscomp.js"></script>
|
||||
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
|
||||
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js?v=823bb831"></script>
|
||||
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js?v=744d344a"></script>
|
||||
<script src="../_static/doctools.js?v=888ff710"></script>
|
||||
<script src="../_static/sphinx_highlight.js?v=4825356b"></script>
|
||||
<link rel="index" title="Index" href="../genindex.html" />
|
||||
@ -25,8 +25,8 @@
|
||||
<div class="container">
|
||||
<div class="brand">
|
||||
<img class="logo" src="../_static/brands/seiscomp/text/white.svg"/>
|
||||
<!-- span class="title">SeisComP Release</span -->
|
||||
<span class="version">6.9.0</span>
|
||||
<!-- span class="title">SeisComP Development</span -->
|
||||
<span class="version">7.0.0</span>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
@ -206,7 +206,7 @@ sensitivity of an instrument or its derived component.</p>
|
||||
</dd>
|
||||
<dt id="term-channel-code">channel code<a class="headerlink" href="#term-channel-code" title="Permalink to this term">¶</a></dt><dd><p>Description of characteristics of data related to the recording sensor and
|
||||
data logger as well as instrument responses, sampling frequencies, etc.
|
||||
The standard codes are defined in the <span id="id2"><em>SEED Reference Manual</em> [<a class="reference internal" href="references.html#id252" title="SEED Reference Manual. USGS, 2012. URL: http://www.fdsn.org/pdf/SEEDManual_V2.4.pdf.">31</a>]</span>.</p>
|
||||
The standard codes are defined in the <span id="id2"><em>SEED Reference Manual</em> [<a class="reference internal" href="references.html#id285" title="SEED Reference Manual. USGS, 2012. URL: http://www.fdsn.org/pdf/SEEDManual_V2.4.pdf.">39</a>]</span>.</p>
|
||||
</dd>
|
||||
<dt id="term-Circum-Pacific-belt">Circum-Pacific belt<a class="headerlink" href="#term-Circum-Pacific-belt" title="Permalink to this term">¶</a></dt><dd><p>The zone surrounding the Pacific Ocean that is characterized by frequent and strong
|
||||
earthquakes and many volcanoes as well as high tsunami hazard. Also called the Ring of Fire.</p>
|
||||
@ -337,14 +337,14 @@ suitable while for others the frequency-domain approach is more appropriate and
|
||||
offering a range of services and products to monitor, process and analyze
|
||||
seismicity. It is the main development and service company for <cite>SeisComP</cite>.</p>
|
||||
</dd>
|
||||
<dt id="term-GEOFON">GEOFON<a class="headerlink" href="#term-GEOFON" title="Permalink to this term">¶</a></dt><dd><p>GEOFON (<a class="reference external" href="https://geofon.gfz-potsdam.de">https://geofon.gfz-potsdam.de</a>) is part of the Modular Earth Science
|
||||
<dt id="term-GEOFON">GEOFON<a class="headerlink" href="#term-GEOFON" title="Permalink to this term">¶</a></dt><dd><p>GEOFON (<a class="reference external" href="https://geofon.gfz.de">https://geofon.gfz.de</a>) is part of the Modular Earth Science
|
||||
Infrastructure (MESI) at <a class="reference internal" href="#term-GFZ"><span class="xref std std-term">GFZ</span></a>.</p>
|
||||
</dd>
|
||||
<dt id="term-geometrical-spreading">geometrical spreading<a class="headerlink" href="#term-geometrical-spreading" title="Permalink to this term">¶</a></dt><dd><p>The component of reduction in wave amplitude due to the radial spreading of seismic energy with
|
||||
increasing distance from a given source.</p>
|
||||
</dd>
|
||||
<dt id="term-GFZ">GFZ<a class="headerlink" href="#term-GFZ" title="Permalink to this term">¶</a></dt><dd><p>Helmholtz Centre Potsdam <a class="reference external" href="http://www.gfz-potsdam.de/">German Research Centre for Geosciences</a>.
|
||||
<cite>SeisComP</cite> was originally developed at GFZ.</p>
|
||||
<dt id="term-GFZ">GFZ<a class="headerlink" href="#term-GFZ" title="Permalink to this term">¶</a></dt><dd><p><a class="reference external" href="http://www.gfz.de/">GFZ Helmholtz Centre for Geosciences</a>. <cite>SeisComP</cite> was
|
||||
originally developed at GFZ.</p>
|
||||
</dd>
|
||||
<dt id="term-GMPE">GMPE<a class="headerlink" href="#term-GMPE" title="Permalink to this term">¶</a></dt><dd><p>Ground Motion Prediction Equation</p>
|
||||
</dd>
|
||||
@ -402,7 +402,7 @@ At some locations the lithosphere below the crust is brittle enough to produce e
|
||||
faulting, such as within a subducted oceanic plate.</p>
|
||||
</dd>
|
||||
<dt id="term-location-code">location code<a class="headerlink" href="#term-location-code" title="Permalink to this term">¶</a></dt><dd><p>Description of particular sensor location associated to a station. The standard
|
||||
location codes are defined in the <span id="id3"><em>SEED Reference Manual</em> [<a class="reference internal" href="references.html#id252" title="SEED Reference Manual. USGS, 2012. URL: http://www.fdsn.org/pdf/SEEDManual_V2.4.pdf.">31</a>]</span>.</p>
|
||||
location codes are defined in the <span id="id3"><em>SEED Reference Manual</em> [<a class="reference internal" href="references.html#id285" title="SEED Reference Manual. USGS, 2012. URL: http://www.fdsn.org/pdf/SEEDManual_V2.4.pdf.">39</a>]</span>.</p>
|
||||
</dd>
|
||||
<dt id="term-Love-wave">Love wave<a class="headerlink" href="#term-Love-wave" title="Permalink to this term">¶</a></dt><dd><p>A major type of surface waves having a horizontal motion that is transverse (or perpendicular)
|
||||
to the direction of propagation. It is named after A. E. H. Love, the English mathematician
|
||||
@ -441,16 +441,16 @@ magnitude type as well as its value is needed to be specified.</p>
|
||||
<p>In <cite>SeisComP</cite> magnitudes are computed automatically by <a class="reference internal" href="../apps/scmag.html#scmag"><span class="std std-ref">scmag</span></a> or interactively
|
||||
by <a class="reference internal" href="../apps/scolv.html#scolv"><span class="std std-ref">scolv</span></a>.</p>
|
||||
</dd>
|
||||
<dt id="term-magnitude-local-ML">magnitude, local (ML)<a class="headerlink" href="#term-magnitude-local-ML" title="Permalink to this term">¶</a></dt><dd><p>Magnitude scale introduced by Richter in the early 1930s (<span id="id4">Richter [<a class="reference internal" href="references.html#id62" title="C.F. Richter. An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am., 1:1 - 32, 1935. URL: https://resolver.caltech.edu/CaltechAUTHORS:20140804-143558638, doi:10.1785/BSSA0250010001.">57</a>]</span>)
|
||||
<dt id="term-magnitude-local-ML">magnitude, local (ML)<a class="headerlink" href="#term-magnitude-local-ML" title="Permalink to this term">¶</a></dt><dd><p>Magnitude scale introduced by Richter in the early 1930s (<span id="id4">Richter [<a class="reference internal" href="references.html#id81" title="C.F. Richter. An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am., 1:1 - 32, 1935. URL: https://resolver.caltech.edu/CaltechAUTHORS:20140804-143558638, doi:10.1785/BSSA0250010001.">66</a>]</span>)
|
||||
to have a common scale for the strength of earthquakes. The basic observation
|
||||
is the systematic decay of the logarithm of the maximum
|
||||
amplitudes with increasing distance for different earthquakes described by:</p>
|
||||
<div class="math">
|
||||
<p><img src="../_images/math/b0ebe6e979dee4886949b4cda7beda6170c120d0.png" alt="ML = \log A_{max} - \log A_0"/></p>
|
||||
<p><img src="../_images/math/b0ebe6e979dee4886949b4cda7beda6170c120d0.svg" alt="ML = \log A_{max} - \log A_0"/></p>
|
||||
</div><p>with A<sub>0</sub> as amplitude of a reference event. For the reference event
|
||||
ML = 0 the formula can be rewritten to</p>
|
||||
<div class="math">
|
||||
<p><img src="../_images/math/c2480e17e843eda90dd925a3cfb2923484409583.png" alt="ML = \log A_{max} - 2.48 + 2.76 \log \Delta"/></p>
|
||||
<p><img src="../_images/math/c2480e17e843eda90dd925a3cfb2923484409583.svg" alt="ML = \log A_{max} - 2.48 + 2.76 \log \Delta"/></p>
|
||||
</div><p>with Δ being the distance of the station to the earthquake location. ML is a
|
||||
magnitude scale for
|
||||
recordings of earthquakes smaller than ML 7 at regional stations. It is
|
||||
@ -530,24 +530,24 @@ mB is used as a synonym for <a class="reference internal" href="#term-magnitude-
|
||||
</ul>
|
||||
<p>Read the <a class="reference internal" href="../apps/global_mb_bb.html#global-mb-bb"><span class="std std-ref">technical documentation</span></a> for more details and the configuration.</p>
|
||||
</dd>
|
||||
<dt id="term-magnitude-cumulative-body-wave-mBc">magnitude, cumulative body-wave (mBc)<a class="headerlink" href="#term-magnitude-cumulative-body-wave-mBc" title="Permalink to this term">¶</a></dt><dd><p>mBc is the cumulative body-wave magnitude. See <span id="id5">Bormann and Wylegalla [<a class="reference internal" href="references.html#id17" title="P. Bormann and K. Wylegalla. Quick estimator of the size of great earthquakes. EOS, 86(46):464, 2005.">40</a>]</span>
|
||||
and <span id="id6">Bormann and Saul [<a class="reference internal" href="references.html#id19" title="P. Bormann and J. Saul. A Fast, Non-saturating Magnitude Estimator for Great Earthquakes. Seismol. Res. Lett., 80(5):808 - 816, 2009. doi:10.1785/gssrl.80.5.808.">39</a>]</span> for details.</p>
|
||||
<dt id="term-magnitude-cumulative-body-wave-mBc">magnitude, cumulative body-wave (mBc)<a class="headerlink" href="#term-magnitude-cumulative-body-wave-mBc" title="Permalink to this term">¶</a></dt><dd><p>mBc is the cumulative body-wave magnitude. See <span id="id5">Bormann and Wylegalla [<a class="reference internal" href="references.html#id27" title="P. Bormann and K. Wylegalla. Quick estimator of the size of great earthquakes. EOS, 86(46):464, 2005.">48</a>]</span>
|
||||
and <span id="id6">Bormann and Saul [<a class="reference internal" href="references.html#id29" title="P. Bormann and J. Saul. A Fast, Non-saturating Magnitude Estimator for Great Earthquakes. Seismol. Res. Lett., 80(5):808 - 816, 2009. doi:10.1785/gssrl.80.5.808.">47</a>]</span> for details.</p>
|
||||
</dd>
|
||||
<dt id="term-magnitude-surface-wave-Ms">magnitude, surface wave (Ms)<a class="headerlink" href="#term-magnitude-surface-wave-Ms" title="Permalink to this term">¶</a></dt><dd><p>Ms is a magnitude scale based on teleseismic surface waves. Historically, Ms
|
||||
is based on measurements of
|
||||
the maximum horizontal true ground motion displacement amplitudes</p>
|
||||
<div class="math">
|
||||
<p><img src="../_images/math/712686e0db840ef121e384b1bf28f7552b5a45a9.png" alt="A_{Hmax} =\sqrt{{A_N}^2 + {A_E}^2}"/></p>
|
||||
<p><img src="../_images/math/712686e0db840ef121e384b1bf28f7552b5a45a9.svg" alt="A_{Hmax} =\sqrt{{A_N}^2 + {A_E}^2}"/></p>
|
||||
</div><p>in the total seismogram at periods around 20 s. For shallow earthquakes the dominant
|
||||
long-period signals are the surface waves. The period of 20 s corresponds to the Airy
|
||||
phase, a local minimum in the group velocity dispersion curve of Rayleigh surface waves.
|
||||
For measuring amplitudes a correction for the WWSSN_LP instrument response is applied.</p>
|
||||
<p>The Moscow-Prague equation for surface wave magnitude is given by</p>
|
||||
<div class="math">
|
||||
<p><img src="../_images/math/93c80b427369a5485ba5001e33597d9ad656e040.png" alt="M_s = \log \left(\frac{A_{Hmax}}{T}\right) + 1.66 \log(\Delta) + 3.3"/></p>
|
||||
<p><img src="../_images/math/93c80b427369a5485ba5001e33597d9ad656e040.svg" alt="M_s = \log \left(\frac{A_{Hmax}}{T}\right) + 1.66 \log(\Delta) + 3.3"/></p>
|
||||
</div><p>where T is the measured period.</p>
|
||||
<div class="math">
|
||||
<p><img src="../_images/math/e5eedbf96d0b9836511e050896a63b594690134f.png" alt="M_s = \log \left(\frac{A}{T}\right)max + 1.66 \log(\Delta) + 3.3"/></p>
|
||||
<p><img src="../_images/math/e5eedbf96d0b9836511e050896a63b594690134f.svg" alt="M_s = \log \left(\frac{A}{T}\right)max + 1.66 \log(\Delta) + 3.3"/></p>
|
||||
</div><p>Here, the maximum ground particle velocity, (A/T)max, is used instead of the AHmax to
|
||||
allow a broader spectrum of dominant periods. This formula is valid for distances of
|
||||
2° to 160° and source depths smaller than 50 km.</p>
|
||||
@ -564,19 +564,13 @@ by the IASPEI magnitude working group issued on 27 March, 2013.</p>
|
||||
<p>Read the <a class="reference internal" href="../apps/global_ms_20.html#global-ms-20"><span class="std std-ref">technical documentation</span></a> for more details and the configuration.</p>
|
||||
</dd>
|
||||
<dt id="term-magnitude-broadband-surface-wave-Ms-BB">magnitude, broadband surface wave (Ms(BB))<a class="headerlink" href="#term-magnitude-broadband-surface-wave-Ms-BB" title="Permalink to this term">¶</a></dt><dd><p>Ms(BB) is a broadband magnitude scale based on teleseismic surface waves.
|
||||
In contrast to <a class="reference internal" href="#term-magnitude-surface-wave-Ms"><span class="xref std std-term">Ms</span></a>, amplitudes for Ms(BB)
|
||||
In contrast to <a class="reference internal" href="#term-magnitude-surface-wave-Ms"><span class="xref std std-term">Ms</span></a>/
|
||||
<a class="reference internal" href="#term-magnitude-surface-wave-Ms_20"><span class="xref std std-term">Ms</span></a>, amplitudes for Ms(BB)
|
||||
are measured as the maximum on vertical true ground motion velocity seismograms without
|
||||
instrument simulation or restitution.</p>
|
||||
<p>The Moscow-Prague equation for surface wave magnitude is applied as given by</p>
|
||||
<div class="math">
|
||||
<p><img src="../_images/math/e265a2c12ff5dda233e41927cae4ead315596b47.png" alt="M_s = \log \left(\frac{A}{2\pi}\right) + 1.66 \log(\Delta) + 3.3"/></p>
|
||||
</div><ul class="simple">
|
||||
<li><p>Amplitude unit in <cite>SeisComP</cite>: <strong>meter per second</strong> (m/s)</p></li>
|
||||
<li><p>Period range: all</p></li>
|
||||
<li><p>Distance range: 2 - 160°</p></li>
|
||||
<li><p>Depth range: 0 - 100 km</p></li>
|
||||
<li><p>Time window: distance (km) / 3.5 km/s + 30 s</p></li>
|
||||
</ul>
|
||||
<p>The Moscow-Prague equation for surface wave magnitude is applied.
|
||||
Read the <span class="xref std std-ref">technical documentation</span> for more details and
|
||||
the configuration.</p>
|
||||
</dd>
|
||||
<dt id="term-magnitude-duration-Md">magnitude, duration (Md)<a class="headerlink" href="#term-magnitude-duration-Md" title="Permalink to this term">¶</a></dt><dd><p>The duration magnitude measured on the coda wave train.</p>
|
||||
<p>Read the <a class="reference internal" href="../apps/global_md.html#global-md"><span class="std std-ref">technical documentation</span></a> for more details and the configuration.</p>
|
||||
@ -585,10 +579,10 @@ instrument simulation or restitution.</p>
|
||||
with 5 s period at local distances. The data set for the calibration was gained by the
|
||||
Japan Meteorological Agency (JMA).</p>
|
||||
<div class="math">
|
||||
<p><img src="../_images/math/f73ef943923c3e1057e14204950603563902e3bf.png" alt="M(JMA) = \log \sqrt{{A_N}^2 + {A_E}^2} + 1.73 \log\Delta - 0.83"/></p>
|
||||
<p><img src="../_images/math/f73ef943923c3e1057e14204950603563902e3bf.svg" alt="M(JMA) = \log \sqrt{{A_N}^2 + {A_E}^2} + 1.73 \log\Delta - 0.83"/></p>
|
||||
</div><p>This equation is valid for local (< 2000 km) and shallow (< 80 km)
|
||||
earthquakes. For deeper earthquakes additional correction functions have
|
||||
to be applied (<span id="id7">Katsumata [<a class="reference internal" href="references.html#id44" title="A. Katsumata. Comparison of Magnitudes Estimated by the Japan Meteorological Agency with Moment Magnitudes for Intermediate and Deep Earthquakes. Bull. Seism. Soc., 86(3):832 - 842, 1996.">49</a>]</span>).</p>
|
||||
to be applied (<span id="id7">Katsumata [<a class="reference internal" href="references.html#id60" title="A. Katsumata. Comparison of Magnitudes Estimated by the Japan Meteorological Agency with Moment Magnitudes for Intermediate and Deep Earthquakes. Bull. Seism. Soc., 86(3):832 - 842, 1996.">57</a>]</span>).</p>
|
||||
<ul class="simple">
|
||||
<li><p>Amplitude unit in <cite>SeisComP</cite>: <strong>micrometer</strong> (um)</p></li>
|
||||
<li><p>Time window: 150 s</p></li>
|
||||
@ -602,7 +596,7 @@ To obtain Mw the seismic moment is first determined, e.g. by a moment tensor inv
|
||||
Then the Mw is gained by the following standard relationship between seismic moment
|
||||
and the moment magnitude (M<sub>0</sub> in cgs units of dyn*cm):</p>
|
||||
<div class="math">
|
||||
<p><img src="../_images/math/b094f771f607c37cea7e1cfb617585a207516afa.png" alt="Mw = \frac{2}{3}(\log M_0 - 16.1)"/></p>
|
||||
<p><img src="../_images/math/b094f771f607c37cea7e1cfb617585a207516afa.svg" alt="Mw = \frac{2}{3}(\log M_0 - 16.1)"/></p>
|
||||
</div><p>This equation is analog to the relation between M<sub>s</sub> and M<sub>0</sub>.</p>
|
||||
</dd>
|
||||
<dt id="term-magnitude-averaged-moment-Mw-avg">magnitude, averaged moment (Mw(avg))<a class="headerlink" href="#term-magnitude-averaged-moment-Mw-avg" title="Permalink to this term">¶</a></dt><dd><p>Moment magnitude derived as a weighted average of other magnitudes.</p>
|
||||
@ -613,7 +607,7 @@ seismograms of the P wave portion are considered as source time function
|
||||
approximation. The seismic moment is estimated for each station by
|
||||
integrating the displacement records. The combination of multiple records
|
||||
results in an estimation of the moment magnitude without correction
|
||||
for the source mechanism (<span id="id8">Tsuboi <em>et al.</em> [<a class="reference internal" href="references.html#id79" title="S. Tsuboi, K. Abe, K. Takano, and Y. Yamanaka. Rapid determination of Mw from broadband P waveforms. Bull. Seismol. Soc. Am., 1995. doi:10.1785/BSSA0850020606.">63</a>]</span>).</p>
|
||||
for the source mechanism (<span id="id8">Tsuboi <em>et al.</em> [<a class="reference internal" href="references.html#id101" title="S. Tsuboi, K. Abe, K. Takano, and Y. Yamanaka. Rapid determination of Mw from broadband P waveforms. Bull. Seismol. Soc. Am., 1995. doi:10.1785/BSSA0850020606.">72</a>]</span>).</p>
|
||||
<ul class="simple">
|
||||
<li><p>Amplitude unit in <cite>SeisComP</cite>: <strong>nanometer times second</strong> (nm*s)</p></li>
|
||||
<li><p>Time window: 95 s</p></li>
|
||||
@ -625,7 +619,7 @@ magnitudes using linear conversion:</p>
|
||||
<p>Mw(mB) = 1.30 mB - 2.18</p>
|
||||
</dd>
|
||||
<dt id="term-magnitude-derived-Mwp-Mw-Mwp">magnitude, derived Mwp (Mw(Mwp))<a class="headerlink" href="#term-magnitude-derived-Mwp-Mw-Mwp" title="Permalink to this term">¶</a></dt><dd><p>Moment magnitude derived from <a class="reference internal" href="#term-magnitude-broadband-P-wave-moment-Mwp"><span class="xref std std-term">Mwp</span></a>
|
||||
magnitudes using linear conversion after <span id="id9">Whitmore <em>et al.</em> [<a class="reference internal" href="references.html#id85" title="P.M. Whitmore, S. Tsuboi, B. Hirshorn, and T.J. Sokolowski. Magnitude dependent correction for Mwp. Science of Tsunami Hazards, 20(4):, 2002.">65</a>]</span>:</p>
|
||||
magnitudes using linear conversion after <span id="id9">Whitmore <em>et al.</em> [<a class="reference internal" href="references.html#id108" title="P.M. Whitmore, S. Tsuboi, B. Hirshorn, and T.J. Sokolowski. Magnitude dependent correction for Mwp. Science of Tsunami Hazards, 20(4):, 2002.">74</a>]</span>:</p>
|
||||
<p>Mw(Mwp) = 1.31 Mwp - 1.91</p>
|
||||
</dd>
|
||||
<dt id="term-magnitude-summary-M">magnitude, summary (M)<a class="headerlink" href="#term-magnitude-summary-M" title="Permalink to this term">¶</a></dt><dd><p>Summary magnitude derived from multiple other magnitudes by <a class="reference internal" href="../apps/scmag.html#scmag"><span class="std std-ref">scmag</span></a>.</p>
|
||||
@ -650,7 +644,7 @@ primary microseisms).</p></li>
|
||||
</dd>
|
||||
<dt id="term-miniSeed">miniSeed<a class="headerlink" href="#term-miniSeed" title="Permalink to this term">¶</a></dt><dd><p>miniSEED is the
|
||||
standard for the exchange of seismic time series. It uses a fixed record
|
||||
length and applies data compression as defined in <span id="id10"><em>SEED Reference Manual</em> [<a class="reference internal" href="references.html#id252" title="SEED Reference Manual. USGS, 2012. URL: http://www.fdsn.org/pdf/SEEDManual_V2.4.pdf.">31</a>]</span>.</p>
|
||||
length and applies data compression as defined in <span id="id10"><em>SEED Reference Manual</em> [<a class="reference internal" href="references.html#id285" title="SEED Reference Manual. USGS, 2012. URL: http://www.fdsn.org/pdf/SEEDManual_V2.4.pdf.">39</a>]</span>.</p>
|
||||
</dd>
|
||||
<dt id="term-MMI">MMI<a class="headerlink" href="#term-MMI" title="Permalink to this term">¶</a></dt><dd><p>Modified Mercalli Intensity</p>
|
||||
</dd>
|
||||
@ -761,7 +755,7 @@ data and metadata (<a class="reference internal" href="#term-inventory"><span cl
|
||||
It is controlled as a standard by the International Federation
|
||||
of Digital Seismograph Networks (FDSN).
|
||||
The current version is 2.4, updated August 2012.
|
||||
Read <span id="id11"><em>SEED Reference Manual</em> [<a class="reference internal" href="references.html#id252" title="SEED Reference Manual. USGS, 2012. URL: http://www.fdsn.org/pdf/SEEDManual_V2.4.pdf.">31</a>]</span> for details.</p>
|
||||
Read <span id="id11"><em>SEED Reference Manual</em> [<a class="reference internal" href="references.html#id285" title="SEED Reference Manual. USGS, 2012. URL: http://www.fdsn.org/pdf/SEEDManual_V2.4.pdf.">39</a>]</span> for details.</p>
|
||||
</dd>
|
||||
<dt id="term-S-phase">S phase<a class="headerlink" href="#term-S-phase" title="Permalink to this term">¶</a></dt><dd><p>The S phase is the arrival of the direct <a class="reference internal" href="#term-S-wave"><span class="xref std std-term">S wave</span></a> that traveled through the Earth’s
|
||||
crust and mantle observed in epicentral distances up to 100°.</p>
|
||||
@ -858,7 +852,7 @@ most seismic region (5 - 6 % of earthquakes) is the Alpide belt.</p>
|
||||
</dd>
|
||||
<dt id="term-root-mean-square-RMS">root mean square (RMS)<a class="headerlink" href="#term-root-mean-square-RMS" title="Permalink to this term">¶</a></dt><dd><p>Also referred to as <a class="reference internal" href="#term-RMS"><span class="xref std std-term">RMS</span></a>. A statistical measure of the magnitude of a varying quantity defined as</p>
|
||||
<div class="math">
|
||||
<p><img src="../_images/math/2f6a630b284c6a5d80008de8acea2f431a388d2c.png" alt="RMS = \sqrt{\frac{{x_1}^2 + {x_2}^2 + {x_3}^2 + ... + {x_n}^2}{N}}"/></p>
|
||||
<p><img src="../_images/math/2f6a630b284c6a5d80008de8acea2f431a388d2c.svg" alt="RMS = \sqrt{\frac{{x_1}^2 + {x_2}^2 + {x_3}^2 + ... + {x_n}^2}{N}}"/></p>
|
||||
</div><p>for the time series with the N elements x<sub>1</sub> to x<sub>n</sub>.</p>
|
||||
</dd>
|
||||
<dt id="term-rupture-front">rupture front<a class="headerlink" href="#term-rupture-front" title="Permalink to this term">¶</a></dt><dd><p>The instantaneous boundary between the slipping and locked parts of a fault during
|
||||
@ -872,7 +866,7 @@ an earthquake.</p>
|
||||
</dd>
|
||||
<dt id="term-SCML">SCML<a class="headerlink" href="#term-SCML" title="Permalink to this term">¶</a></dt><dd><p><a class="reference internal" href="#term-SeisComP"><span class="xref std std-term">SeisComP</span></a> Markup Language. SCML is a flavor of <a class="reference external" href="https://quake.ethz.ch/quakeml/">QuakeML</a> and is used by <cite>SeisComP</cite> and by
|
||||
products of <a class="reference internal" href="#term-gempa-GmbH"><span class="xref std std-term">gempa GmbH</span></a> for exchange. For details read the
|
||||
<a class="reference external" href="https://geofon.gfz-potsdam.de/_uml/">UML diagram</a>.</p>
|
||||
<a class="reference external" href="https://geofon.gfz.de/_uml/">UML diagram</a>.</p>
|
||||
</dd>
|
||||
<dt id="term-SDS">SDS<a class="headerlink" href="#term-SDS" title="Permalink to this term">¶</a></dt><dd><p><cite>SeisComP</cite> Data Structure which is used for archiving waveform data. Below the
|
||||
base directory of the archive the SDS has the structure:</p>
|
||||
@ -887,15 +881,15 @@ base directory of the archive the SDS has the structure:</p>
|
||||
</dd>
|
||||
<dt id="term-SED">SED<a class="headerlink" href="#term-SED" title="Permalink to this term">¶</a></dt><dd><p>Specific Energy Density</p>
|
||||
</dd>
|
||||
<dt id="term-SeedLink">SeedLink<a class="headerlink" href="#term-SeedLink" title="Permalink to this term">¶</a></dt><dd><p>SeedLink <span id="id12">[<a class="reference internal" href="references.html#id253" title="seedlink. Real-time waveform server. URL: https://docs.gempa.de/seiscomp/current/apps/seedlink.html.">30</a>]</span> is a
|
||||
<dt id="term-SeedLink">SeedLink<a class="headerlink" href="#term-SeedLink" title="Permalink to this term">¶</a></dt><dd><p>SeedLink <span id="id12">[<a class="reference internal" href="references.html#id286" title="seedlink. Real-time waveform server. URL: https://docs.gempa.de/seiscomp/current/apps/seedlink.html.">38</a>]</span> is a
|
||||
real-time data acquisition protocol and a client-server software that
|
||||
implements this protocol</p>
|
||||
</dd>
|
||||
<dt id="term-SeisComP">SeisComP<a class="headerlink" href="#term-SeisComP" title="Permalink to this term">¶</a></dt><dd><p>SeisComP is likely the most widely distributed software package for
|
||||
seismological data acquisition and real-time data exchange over internet.
|
||||
Its data transmission protocol SeedLink became a de facto world standard.
|
||||
The first version of SeisComP was developed for the <a class="reference external" href="http://geofon.gfz-potsdam.de/geofon/">GEOFON</a> network and further extended
|
||||
within the MEREDIAN project under the lead of <a class="reference external" href="http://geofon.gfz-potsdam.de/geofon/">GEOFON</a>/<a class="reference external" href="http://www.gfz-potsdam.de/">GFZ</a> Potsdam and <a class="reference external" href="http://www.orfeus-eu.org/">ORFEUS</a>. Originally SeisComP was designed as a high
|
||||
The first version of SeisComP was developed for the <a class="reference external" href="http://geofon.gfz.de">GEOFON</a> network and further extended within the MEREDIAN
|
||||
project under the lead of <a class="reference external" href="http://geofon.gfz.de">GEOFON</a>/<a class="reference external" href="http://www.gfz.de">GFZ</a> Potsdam and <a class="reference external" href="http://www.orfeus-eu.org/">ORFEUS</a>. Originally SeisComP was designed as a high
|
||||
standard fully automatic data acquisition and (near-)real-time data
|
||||
processing tool including quality control, event detection and location as
|
||||
well as dissemination of event alerts. In the context of the <a class="reference external" href="http://www.gitews.de/">GITEWS</a> project (German Indian Ocean Tsunami Early
|
||||
@ -922,26 +916,26 @@ location of a strong earthquake in the future.</p>
|
||||
</dd>
|
||||
<dt id="term-seismic-moment-M0">seismic moment (M<sub>0</sub>)<a class="headerlink" href="#term-seismic-moment-M0" title="Permalink to this term">¶</a></dt><dd><p>The seismic moment is defined as</p>
|
||||
<div class="math">
|
||||
<p><img src="../_images/math/8f1708ea69c95606206a9c9491a7664a7d3ebcfc.png" alt="M_0 = \mu D A"/></p>
|
||||
<p><img src="../_images/math/8f1708ea69c95606206a9c9491a7664a7d3ebcfc.svg" alt="M_0 = \mu D A"/></p>
|
||||
</div><p>with μ as rigidity of the rock at the fault, D as averaged displacement on the
|
||||
fault and A as fault surface area. For pure shear sources, M<sub>0</sub> equals
|
||||
the <a class="reference internal" href="#term-total-seismic-moment-MT"><span class="xref std std-term">total seismic moment (MT)</span></a>.
|
||||
The seismic moment can be related to the released seismic energy ES that is
|
||||
proportional to the stress drop Δσ:</p>
|
||||
<div class="math">
|
||||
<p><img src="../_images/math/045405e3ed4451fb8c73dfa60cf0db9d9c09b15e.png" alt="E_S \approx 0.5 \Delta\sigma D A"/></p>
|
||||
<p><img src="../_images/math/045405e3ed4451fb8c73dfa60cf0db9d9c09b15e.svg" alt="E_S \approx 0.5 \Delta\sigma D A"/></p>
|
||||
</div><p>Rearranging both equations yields to:</p>
|
||||
<div class="math">
|
||||
<p><img src="../_images/math/bfb9920a001f8f2088e3444b21712bc8ce7eea27.png" alt="E_S \approx \frac{\Delta\sigma}{2\mu} M_0"/></p>
|
||||
<p><img src="../_images/math/bfb9920a001f8f2088e3444b21712bc8ce7eea27.svg" alt="E_S \approx \frac{\Delta\sigma}{2\mu} M_0"/></p>
|
||||
</div><p>M<sub>0</sub> can be determined by the asymptote of the amplitude spectrum at
|
||||
frequency = 0.
|
||||
A common technique for determination of the seismic moment M<sub>0</sub> is the
|
||||
moment tensor inversion. Assuming reasonable values for the rigidity of the
|
||||
rock (3-6 x 104 MPa in crust and upper mantle) and the stress drop (2-6 MPa)
|
||||
the seismic moment can be related to the surface wave magnitude Ms by the
|
||||
empirical relationship found by <span id="id14">Gutenberg and Richter [<a class="reference internal" href="references.html#id36" title="B. Gutenberg and C.F. Richter. Magnitude and Energy of Earthquakes. Annals of Geophysics, 9(1):1 - 15, 1956. URL: https://resolver.caltech.edu/CaltechAUTHORS:20140130-105324849, doi:10.4401/ag-5590.">43</a>]</span> (units in cgs):</p>
|
||||
empirical relationship found by <span id="id14">Gutenberg and Richter [<a class="reference internal" href="references.html#id51" title="B. Gutenberg and C.F. Richter. Magnitude and Energy of Earthquakes. Annals of Geophysics, 9(1):1 - 15, 1956. URL: https://resolver.caltech.edu/CaltechAUTHORS:20140130-105324849, doi:10.4401/ag-5590.">51</a>]</span> (units in cgs):</p>
|
||||
<div class="math">
|
||||
<p><img src="../_images/math/d7e59ce0e8d9250bee9b829d4a243edee8473113.png" alt="\log E_S = 11.8 + 1.5 Ms
|
||||
<p><img src="../_images/math/d7e59ce0e8d9250bee9b829d4a243edee8473113.svg" alt="\log E_S = 11.8 + 1.5 Ms
|
||||
|
||||
\log M_0 = 1.5 Ms + 16.1"/></p>
|
||||
</div></dd>
|
||||
@ -1060,7 +1054,7 @@ to the equivalent representation in the frequency domain) (see also Fourier anal
|
||||
</dd>
|
||||
<dt id="term-total-seismic-moment-MT">total seismic moment (MT)<a class="headerlink" href="#term-total-seismic-moment-MT" title="Permalink to this term">¶</a></dt><dd><p>A measure of the strength of the full <a class="reference internal" href="#term-moment-tensor"><span class="xref std std-term">moment tensor</span></a>:</p>
|
||||
<div class="math">
|
||||
<p><img src="../_images/math/1712005c894ef6c6244697d1123cc2c090368cb3.png" alt="M_T = \sqrt{\sum_{ij}M_{ij}M_{ij}/2}"/></p>
|
||||
<p><img src="../_images/math/1712005c894ef6c6244697d1123cc2c090368cb3.svg" alt="M_T = \sqrt{\sum_{ij}M_{ij}M_{ij}/2}"/></p>
|
||||
</div><p>For pure shear sources M<sub>T</sub> equals <a class="reference internal" href="#term-seismic-moment-M0"><span class="xref std std-term">seismic moment (M0)</span></a>.</p>
|
||||
</dd>
|
||||
<dt id="term-transfer-function">transfer function<a class="headerlink" href="#term-transfer-function" title="Permalink to this term">¶</a></dt><dd><p>The transfer function of a seismic sensor-recorder system (or of the Earth
|
||||
@ -1162,17 +1156,17 @@ wave (for example, crest to crest or trough to trough).</p>
|
||||
effect of the referenced object (e.g. Pick).</p>
|
||||
</dd>
|
||||
<dt id="term-Wood-Anderson-seismometer">Wood-Anderson seismometer<a class="headerlink" href="#term-Wood-Anderson-seismometer" title="Permalink to this term">¶</a></dt><dd><p>Torsion seismometer recording horizontal displacement
|
||||
<a class="reference internal" href="#term-amplitude"><span class="xref std std-term">amplitudes</span></a> described in <span id="id15">Richter [<a class="reference internal" href="references.html#id62" title="C.F. Richter. An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am., 1:1 - 32, 1935. URL: https://resolver.caltech.edu/CaltechAUTHORS:20140804-143558638, doi:10.1785/BSSA0250010001.">57</a>]</span> and
|
||||
<span id="id16">Uhrhammer and Collins [<a class="reference internal" href="references.html#id81" title="R.A. Uhrhammer and E.R. Collins. Synthesis of Wood-Anderson seismograms from broadband digital records. Bull. Seismol. Soc. Am., 80(3):702–716, 1990. doi:10.1785/BSSA0800030702.">64</a>]</span>. Simulation of the Wood-Anderson seismometer is
|
||||
<a class="reference internal" href="#term-amplitude"><span class="xref std std-term">amplitudes</span></a> described in <span id="id15">Richter [<a class="reference internal" href="references.html#id81" title="C.F. Richter. An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am., 1:1 - 32, 1935. URL: https://resolver.caltech.edu/CaltechAUTHORS:20140804-143558638, doi:10.1785/BSSA0250010001.">66</a>]</span> and
|
||||
<span id="id16">Uhrhammer and Collins [<a class="reference internal" href="references.html#id104" title="R.A. Uhrhammer and E.R. Collins. Synthesis of Wood-Anderson seismograms from broadband digital records. Bull. Seismol. Soc. Am., 80(3):702–716, 1990. doi:10.1785/BSSA0800030702.">73</a>]</span>. Simulation of the Wood-Anderson seismometer is
|
||||
used for measuring amplitudes for selected <a class="reference internal" href="#term-magnitude"><span class="xref std std-term">magnitudes</span></a>.
|
||||
SeisComP3 and SeisComP in versions 4 and 5 have considered Wood-Anderson
|
||||
instrument parameters originally published by <span id="id17">Richter [<a class="reference internal" href="references.html#id62" title="C.F. Richter. An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am., 1:1 - 32, 1935. URL: https://resolver.caltech.edu/CaltechAUTHORS:20140804-143558638, doi:10.1785/BSSA0250010001.">57</a>]</span> with
|
||||
instrument parameters originally published by <span id="id17">Richter [<a class="reference internal" href="references.html#id81" title="C.F. Richter. An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am., 1:1 - 32, 1935. URL: https://resolver.caltech.edu/CaltechAUTHORS:20140804-143558638, doi:10.1785/BSSA0250010001.">66</a>]</span> with
|
||||
gain = 2800, T0 = 0.8 s, h = 0.8. However, updated parameters where
|
||||
published by <span id="id18">Uhrhammer and Collins [<a class="reference internal" href="references.html#id81" title="R.A. Uhrhammer and E.R. Collins. Synthesis of Wood-Anderson seismograms from broadband digital records. Bull. Seismol. Soc. Am., 80(3):702–716, 1990. doi:10.1785/BSSA0800030702.">64</a>]</span> with gain = 2080, T0 = 0.8 s,
|
||||
published by <span id="id18">Uhrhammer and Collins [<a class="reference internal" href="references.html#id104" title="R.A. Uhrhammer and E.R. Collins. Synthesis of Wood-Anderson seismograms from broadband digital records. Bull. Seismol. Soc. Am., 80(3):702–716, 1990. doi:10.1785/BSSA0800030702.">73</a>]</span> with gain = 2080, T0 = 0.8 s,
|
||||
h = 0.7. These values were part of the IASPEI Magnitude Working Group
|
||||
recommendations of 2011 September 9 and therefore apply by default in later
|
||||
versions of SeisComP. With the original set of values
|
||||
<span id="id19">[<a class="reference internal" href="references.html#id62" title="C.F. Richter. An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am., 1:1 - 32, 1935. URL: https://resolver.caltech.edu/CaltechAUTHORS:20140804-143558638, doi:10.1785/BSSA0250010001.">57</a>]</span>, magnitudes are systematically overestimated by 0.13.
|
||||
<span id="id19">[<a class="reference internal" href="references.html#id81" title="C.F. Richter. An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am., 1:1 - 32, 1935. URL: https://resolver.caltech.edu/CaltechAUTHORS:20140804-143558638, doi:10.1785/BSSA0250010001.">66</a>]</span>, magnitudes are systematically overestimated by 0.13.
|
||||
Wood-Anderson seismometers can be simulated by filtering waveforms with
|
||||
<a class="reference internal" href="filter-grammar.html#WA" title="WA"><code class="xref py py-func docutils literal notranslate"><span class="pre">WA()</span></code></a>.</p>
|
||||
</dd>
|
||||
@ -1261,7 +1255,7 @@ seismic station or any other site to the hypocentre of the seismic event.</p>
|
||||
</a>
|
||||
<div class="stretched align-center fitted content">
|
||||
<div>
|
||||
Version <b>6.9.0</b> Release
|
||||
Version <b>7.0.0</b> Development
|
||||
</div>
|
||||
<div class="copyright">
|
||||
Copyright © gempa GmbH, GFZ Potsdam.
|
||||
|
||||
Reference in New Issue
Block a user