[installation] Change to nightly

This commit is contained in:
2025-10-30 12:04:59 +01:00
parent 2ff097f9d1
commit a31bc45cce
1441 changed files with 60368 additions and 56360 deletions

View File

@ -4,7 +4,7 @@
<head>
<meta charset="utf-8" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Glossary &#8212; SeisComP Release documentation</title>
<title>Glossary &#8212; SeisComP Development documentation</title>
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/seiscomp.css" type="text/css" />
<link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=72bcf2f2" />
@ -12,7 +12,7 @@
<link rel="stylesheet" type="text/css" href="../_static/graphviz.css?v=eafc0fe6" />
<script type="text/javascript" src="../_static/seiscomp.js"></script>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js?v=823bb831"></script>
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js?v=744d344a"></script>
<script src="../_static/doctools.js?v=888ff710"></script>
<script src="../_static/sphinx_highlight.js?v=4825356b"></script>
<link rel="index" title="Index" href="../genindex.html" />
@ -25,8 +25,8 @@
<div class="container">
<div class="brand">
<img class="logo" src="../_static/brands/seiscomp/text/white.svg"/>
<!-- span class="title">SeisComP Release</span -->
<span class="version">6.9.0</span>
<!-- span class="title">SeisComP Development</span -->
<span class="version">7.0.0</span>
</div>
</div>
</div>
@ -206,7 +206,7 @@ sensitivity of an instrument or its derived component.</p>
</dd>
<dt id="term-channel-code">channel code<a class="headerlink" href="#term-channel-code" title="Permalink to this term"></a></dt><dd><p>Description of characteristics of data related to the recording sensor and
data logger as well as instrument responses, sampling frequencies, etc.
The standard codes are defined in the <span id="id2"><em>SEED Reference Manual</em> [<a class="reference internal" href="references.html#id252" title="SEED Reference Manual. USGS, 2012. URL: http://www.fdsn.org/pdf/SEEDManual_V2.4.pdf.">31</a>]</span>.</p>
The standard codes are defined in the <span id="id2"><em>SEED Reference Manual</em> [<a class="reference internal" href="references.html#id285" title="SEED Reference Manual. USGS, 2012. URL: http://www.fdsn.org/pdf/SEEDManual_V2.4.pdf.">39</a>]</span>.</p>
</dd>
<dt id="term-Circum-Pacific-belt">Circum-Pacific belt<a class="headerlink" href="#term-Circum-Pacific-belt" title="Permalink to this term"></a></dt><dd><p>The zone surrounding the Pacific Ocean that is characterized by frequent and strong
earthquakes and many volcanoes as well as high tsunami hazard. Also called the Ring of Fire.</p>
@ -337,14 +337,14 @@ suitable while for others the frequency-domain approach is more appropriate and
offering a range of services and products to monitor, process and analyze
seismicity. It is the main development and service company for <cite>SeisComP</cite>.</p>
</dd>
<dt id="term-GEOFON">GEOFON<a class="headerlink" href="#term-GEOFON" title="Permalink to this term"></a></dt><dd><p>GEOFON (<a class="reference external" href="https://geofon.gfz-potsdam.de">https://geofon.gfz-potsdam.de</a>) is part of the Modular Earth Science
<dt id="term-GEOFON">GEOFON<a class="headerlink" href="#term-GEOFON" title="Permalink to this term"></a></dt><dd><p>GEOFON (<a class="reference external" href="https://geofon.gfz.de">https://geofon.gfz.de</a>) is part of the Modular Earth Science
Infrastructure (MESI) at <a class="reference internal" href="#term-GFZ"><span class="xref std std-term">GFZ</span></a>.</p>
</dd>
<dt id="term-geometrical-spreading">geometrical spreading<a class="headerlink" href="#term-geometrical-spreading" title="Permalink to this term"></a></dt><dd><p>The component of reduction in wave amplitude due to the radial spreading of seismic energy with
increasing distance from a given source.</p>
</dd>
<dt id="term-GFZ">GFZ<a class="headerlink" href="#term-GFZ" title="Permalink to this term"></a></dt><dd><p>Helmholtz Centre Potsdam <a class="reference external" href="http://www.gfz-potsdam.de/">German Research Centre for Geosciences</a>.
<cite>SeisComP</cite> was originally developed at GFZ.</p>
<dt id="term-GFZ">GFZ<a class="headerlink" href="#term-GFZ" title="Permalink to this term"></a></dt><dd><p><a class="reference external" href="http://www.gfz.de/">GFZ Helmholtz Centre for Geosciences</a>. <cite>SeisComP</cite> was
originally developed at GFZ.</p>
</dd>
<dt id="term-GMPE">GMPE<a class="headerlink" href="#term-GMPE" title="Permalink to this term"></a></dt><dd><p>Ground Motion Prediction Equation</p>
</dd>
@ -402,7 +402,7 @@ At some locations the lithosphere below the crust is brittle enough to produce e
faulting, such as within a subducted oceanic plate.</p>
</dd>
<dt id="term-location-code">location code<a class="headerlink" href="#term-location-code" title="Permalink to this term"></a></dt><dd><p>Description of particular sensor location associated to a station. The standard
location codes are defined in the <span id="id3"><em>SEED Reference Manual</em> [<a class="reference internal" href="references.html#id252" title="SEED Reference Manual. USGS, 2012. URL: http://www.fdsn.org/pdf/SEEDManual_V2.4.pdf.">31</a>]</span>.</p>
location codes are defined in the <span id="id3"><em>SEED Reference Manual</em> [<a class="reference internal" href="references.html#id285" title="SEED Reference Manual. USGS, 2012. URL: http://www.fdsn.org/pdf/SEEDManual_V2.4.pdf.">39</a>]</span>.</p>
</dd>
<dt id="term-Love-wave">Love wave<a class="headerlink" href="#term-Love-wave" title="Permalink to this term"></a></dt><dd><p>A major type of surface waves having a horizontal motion that is transverse (or perpendicular)
to the direction of propagation. It is named after A. E. H. Love, the English mathematician
@ -441,16 +441,16 @@ magnitude type as well as its value is needed to be specified.</p>
<p>In <cite>SeisComP</cite> magnitudes are computed automatically by <a class="reference internal" href="../apps/scmag.html#scmag"><span class="std std-ref">scmag</span></a> or interactively
by <a class="reference internal" href="../apps/scolv.html#scolv"><span class="std std-ref">scolv</span></a>.</p>
</dd>
<dt id="term-magnitude-local-ML">magnitude, local (ML)<a class="headerlink" href="#term-magnitude-local-ML" title="Permalink to this term"></a></dt><dd><p>Magnitude scale introduced by Richter in the early 1930s (<span id="id4">Richter [<a class="reference internal" href="references.html#id62" title="C.F. Richter. An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am., 1:1 - 32, 1935. URL: https://resolver.caltech.edu/CaltechAUTHORS:20140804-143558638, doi:10.1785/BSSA0250010001.">57</a>]</span>)
<dt id="term-magnitude-local-ML">magnitude, local (ML)<a class="headerlink" href="#term-magnitude-local-ML" title="Permalink to this term"></a></dt><dd><p>Magnitude scale introduced by Richter in the early 1930s (<span id="id4">Richter [<a class="reference internal" href="references.html#id81" title="C.F. Richter. An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am., 1:1 - 32, 1935. URL: https://resolver.caltech.edu/CaltechAUTHORS:20140804-143558638, doi:10.1785/BSSA0250010001.">66</a>]</span>)
to have a common scale for the strength of earthquakes. The basic observation
is the systematic decay of the logarithm of the maximum
amplitudes with increasing distance for different earthquakes described by:</p>
<div class="math">
<p><img src="../_images/math/b0ebe6e979dee4886949b4cda7beda6170c120d0.png" alt="ML = \log A_{max} - \log A_0"/></p>
<p><img src="../_images/math/b0ebe6e979dee4886949b4cda7beda6170c120d0.svg" alt="ML = \log A_{max} - \log A_0"/></p>
</div><p>with A<sub>0</sub> as amplitude of a reference event. For the reference event
ML = 0 the formula can be rewritten to</p>
<div class="math">
<p><img src="../_images/math/c2480e17e843eda90dd925a3cfb2923484409583.png" alt="ML = \log A_{max} - 2.48 + 2.76 \log \Delta"/></p>
<p><img src="../_images/math/c2480e17e843eda90dd925a3cfb2923484409583.svg" alt="ML = \log A_{max} - 2.48 + 2.76 \log \Delta"/></p>
</div><p>with Δ being the distance of the station to the earthquake location. ML is a
magnitude scale for
recordings of earthquakes smaller than ML 7 at regional stations. It is
@ -530,24 +530,24 @@ mB is used as a synonym for <a class="reference internal" href="#term-magnitude-
</ul>
<p>Read the <a class="reference internal" href="../apps/global_mb_bb.html#global-mb-bb"><span class="std std-ref">technical documentation</span></a> for more details and the configuration.</p>
</dd>
<dt id="term-magnitude-cumulative-body-wave-mBc">magnitude, cumulative body-wave (mBc)<a class="headerlink" href="#term-magnitude-cumulative-body-wave-mBc" title="Permalink to this term"></a></dt><dd><p>mBc is the cumulative body-wave magnitude. See <span id="id5">Bormann and Wylegalla [<a class="reference internal" href="references.html#id17" title="P. Bormann and K. Wylegalla. Quick estimator of the size of great earthquakes. EOS, 86(46):464, 2005.">40</a>]</span>
and <span id="id6">Bormann and Saul [<a class="reference internal" href="references.html#id19" title="P. Bormann and J. Saul. A Fast, Non-saturating Magnitude Estimator for Great Earthquakes. Seismol. Res. Lett., 80(5):808 - 816, 2009. doi:10.1785/gssrl.80.5.808.">39</a>]</span> for details.</p>
<dt id="term-magnitude-cumulative-body-wave-mBc">magnitude, cumulative body-wave (mBc)<a class="headerlink" href="#term-magnitude-cumulative-body-wave-mBc" title="Permalink to this term"></a></dt><dd><p>mBc is the cumulative body-wave magnitude. See <span id="id5">Bormann and Wylegalla [<a class="reference internal" href="references.html#id27" title="P. Bormann and K. Wylegalla. Quick estimator of the size of great earthquakes. EOS, 86(46):464, 2005.">48</a>]</span>
and <span id="id6">Bormann and Saul [<a class="reference internal" href="references.html#id29" title="P. Bormann and J. Saul. A Fast, Non-saturating Magnitude Estimator for Great Earthquakes. Seismol. Res. Lett., 80(5):808 - 816, 2009. doi:10.1785/gssrl.80.5.808.">47</a>]</span> for details.</p>
</dd>
<dt id="term-magnitude-surface-wave-Ms">magnitude, surface wave (Ms)<a class="headerlink" href="#term-magnitude-surface-wave-Ms" title="Permalink to this term"></a></dt><dd><p>Ms is a magnitude scale based on teleseismic surface waves. Historically, Ms
is based on measurements of
the maximum horizontal true ground motion displacement amplitudes</p>
<div class="math">
<p><img src="../_images/math/712686e0db840ef121e384b1bf28f7552b5a45a9.png" alt="A_{Hmax} =\sqrt{{A_N}^2 + {A_E}^2}"/></p>
<p><img src="../_images/math/712686e0db840ef121e384b1bf28f7552b5a45a9.svg" alt="A_{Hmax} =\sqrt{{A_N}^2 + {A_E}^2}"/></p>
</div><p>in the total seismogram at periods around 20 s. For shallow earthquakes the dominant
long-period signals are the surface waves. The period of 20 s corresponds to the Airy
phase, a local minimum in the group velocity dispersion curve of Rayleigh surface waves.
For measuring amplitudes a correction for the WWSSN_LP instrument response is applied.</p>
<p>The Moscow-Prague equation for surface wave magnitude is given by</p>
<div class="math">
<p><img src="../_images/math/93c80b427369a5485ba5001e33597d9ad656e040.png" alt="M_s = \log \left(\frac{A_{Hmax}}{T}\right) + 1.66 \log(\Delta) + 3.3"/></p>
<p><img src="../_images/math/93c80b427369a5485ba5001e33597d9ad656e040.svg" alt="M_s = \log \left(\frac{A_{Hmax}}{T}\right) + 1.66 \log(\Delta) + 3.3"/></p>
</div><p>where T is the measured period.</p>
<div class="math">
<p><img src="../_images/math/e5eedbf96d0b9836511e050896a63b594690134f.png" alt="M_s = \log \left(\frac{A}{T}\right)max + 1.66 \log(\Delta) + 3.3"/></p>
<p><img src="../_images/math/e5eedbf96d0b9836511e050896a63b594690134f.svg" alt="M_s = \log \left(\frac{A}{T}\right)max + 1.66 \log(\Delta) + 3.3"/></p>
</div><p>Here, the maximum ground particle velocity, (A/T)max, is used instead of the AHmax to
allow a broader spectrum of dominant periods. This formula is valid for distances of
2° to 160° and source depths smaller than 50 km.</p>
@ -564,19 +564,13 @@ by the IASPEI magnitude working group issued on 27 March, 2013.</p>
<p>Read the <a class="reference internal" href="../apps/global_ms_20.html#global-ms-20"><span class="std std-ref">technical documentation</span></a> for more details and the configuration.</p>
</dd>
<dt id="term-magnitude-broadband-surface-wave-Ms-BB">magnitude, broadband surface wave (Ms(BB))<a class="headerlink" href="#term-magnitude-broadband-surface-wave-Ms-BB" title="Permalink to this term"></a></dt><dd><p>Ms(BB) is a broadband magnitude scale based on teleseismic surface waves.
In contrast to <a class="reference internal" href="#term-magnitude-surface-wave-Ms"><span class="xref std std-term">Ms</span></a>, amplitudes for Ms(BB)
In contrast to <a class="reference internal" href="#term-magnitude-surface-wave-Ms"><span class="xref std std-term">Ms</span></a>/
<a class="reference internal" href="#term-magnitude-surface-wave-Ms_20"><span class="xref std std-term">Ms</span></a>, amplitudes for Ms(BB)
are measured as the maximum on vertical true ground motion velocity seismograms without
instrument simulation or restitution.</p>
<p>The Moscow-Prague equation for surface wave magnitude is applied as given by</p>
<div class="math">
<p><img src="../_images/math/e265a2c12ff5dda233e41927cae4ead315596b47.png" alt="M_s = \log \left(\frac{A}{2\pi}\right) + 1.66 \log(\Delta) + 3.3"/></p>
</div><ul class="simple">
<li><p>Amplitude unit in <cite>SeisComP</cite>: <strong>meter per second</strong> (m/s)</p></li>
<li><p>Period range: all</p></li>
<li><p>Distance range: 2 - 160°</p></li>
<li><p>Depth range: 0 - 100 km</p></li>
<li><p>Time window: distance (km) / 3.5 km/s + 30 s</p></li>
</ul>
<p>The Moscow-Prague equation for surface wave magnitude is applied.
Read the <span class="xref std std-ref">technical documentation</span> for more details and
the configuration.</p>
</dd>
<dt id="term-magnitude-duration-Md">magnitude, duration (Md)<a class="headerlink" href="#term-magnitude-duration-Md" title="Permalink to this term"></a></dt><dd><p>The duration magnitude measured on the coda wave train.</p>
<p>Read the <a class="reference internal" href="../apps/global_md.html#global-md"><span class="std std-ref">technical documentation</span></a> for more details and the configuration.</p>
@ -585,10 +579,10 @@ instrument simulation or restitution.</p>
with 5 s period at local distances. The data set for the calibration was gained by the
Japan Meteorological Agency (JMA).</p>
<div class="math">
<p><img src="../_images/math/f73ef943923c3e1057e14204950603563902e3bf.png" alt="M(JMA) = \log \sqrt{{A_N}^2 + {A_E}^2} + 1.73 \log\Delta - 0.83"/></p>
<p><img src="../_images/math/f73ef943923c3e1057e14204950603563902e3bf.svg" alt="M(JMA) = \log \sqrt{{A_N}^2 + {A_E}^2} + 1.73 \log\Delta - 0.83"/></p>
</div><p>This equation is valid for local (&lt; 2000 km) and shallow (&lt; 80 km)
earthquakes. For deeper earthquakes additional correction functions have
to be applied (<span id="id7">Katsumata [<a class="reference internal" href="references.html#id44" title="A. Katsumata. Comparison of Magnitudes Estimated by the Japan Meteorological Agency with Moment Magnitudes for Intermediate and Deep Earthquakes. Bull. Seism. Soc., 86(3):832 - 842, 1996.">49</a>]</span>).</p>
to be applied (<span id="id7">Katsumata [<a class="reference internal" href="references.html#id60" title="A. Katsumata. Comparison of Magnitudes Estimated by the Japan Meteorological Agency with Moment Magnitudes for Intermediate and Deep Earthquakes. Bull. Seism. Soc., 86(3):832 - 842, 1996.">57</a>]</span>).</p>
<ul class="simple">
<li><p>Amplitude unit in <cite>SeisComP</cite>: <strong>micrometer</strong> (um)</p></li>
<li><p>Time window: 150 s</p></li>
@ -602,7 +596,7 @@ To obtain Mw the seismic moment is first determined, e.g. by a moment tensor inv
Then the Mw is gained by the following standard relationship between seismic moment
and the moment magnitude (M<sub>0</sub> in cgs units of dyn*cm):</p>
<div class="math">
<p><img src="../_images/math/b094f771f607c37cea7e1cfb617585a207516afa.png" alt="Mw = \frac{2}{3}(\log M_0 - 16.1)"/></p>
<p><img src="../_images/math/b094f771f607c37cea7e1cfb617585a207516afa.svg" alt="Mw = \frac{2}{3}(\log M_0 - 16.1)"/></p>
</div><p>This equation is analog to the relation between M<sub>s</sub> and M<sub>0</sub>.</p>
</dd>
<dt id="term-magnitude-averaged-moment-Mw-avg">magnitude, averaged moment (Mw(avg))<a class="headerlink" href="#term-magnitude-averaged-moment-Mw-avg" title="Permalink to this term"></a></dt><dd><p>Moment magnitude derived as a weighted average of other magnitudes.</p>
@ -613,7 +607,7 @@ seismograms of the P wave portion are considered as source time function
approximation. The seismic moment is estimated for each station by
integrating the displacement records. The combination of multiple records
results in an estimation of the moment magnitude without correction
for the source mechanism (<span id="id8">Tsuboi <em>et al.</em> [<a class="reference internal" href="references.html#id79" title="S. Tsuboi, K. Abe, K. Takano, and Y. Yamanaka. Rapid determination of Mw from broadband P waveforms. Bull. Seismol. Soc. Am., 1995. doi:10.1785/BSSA0850020606.">63</a>]</span>).</p>
for the source mechanism (<span id="id8">Tsuboi <em>et al.</em> [<a class="reference internal" href="references.html#id101" title="S. Tsuboi, K. Abe, K. Takano, and Y. Yamanaka. Rapid determination of Mw from broadband P waveforms. Bull. Seismol. Soc. Am., 1995. doi:10.1785/BSSA0850020606.">72</a>]</span>).</p>
<ul class="simple">
<li><p>Amplitude unit in <cite>SeisComP</cite>: <strong>nanometer times second</strong> (nm*s)</p></li>
<li><p>Time window: 95 s</p></li>
@ -625,7 +619,7 @@ magnitudes using linear conversion:</p>
<p>Mw(mB) = 1.30 mB - 2.18</p>
</dd>
<dt id="term-magnitude-derived-Mwp-Mw-Mwp">magnitude, derived Mwp (Mw(Mwp))<a class="headerlink" href="#term-magnitude-derived-Mwp-Mw-Mwp" title="Permalink to this term"></a></dt><dd><p>Moment magnitude derived from <a class="reference internal" href="#term-magnitude-broadband-P-wave-moment-Mwp"><span class="xref std std-term">Mwp</span></a>
magnitudes using linear conversion after <span id="id9">Whitmore <em>et al.</em> [<a class="reference internal" href="references.html#id85" title="P.M. Whitmore, S. Tsuboi, B. Hirshorn, and T.J. Sokolowski. Magnitude dependent correction for Mwp. Science of Tsunami Hazards, 20(4):, 2002.">65</a>]</span>:</p>
magnitudes using linear conversion after <span id="id9">Whitmore <em>et al.</em> [<a class="reference internal" href="references.html#id108" title="P.M. Whitmore, S. Tsuboi, B. Hirshorn, and T.J. Sokolowski. Magnitude dependent correction for Mwp. Science of Tsunami Hazards, 20(4):, 2002.">74</a>]</span>:</p>
<p>Mw(Mwp) = 1.31 Mwp - 1.91</p>
</dd>
<dt id="term-magnitude-summary-M">magnitude, summary (M)<a class="headerlink" href="#term-magnitude-summary-M" title="Permalink to this term"></a></dt><dd><p>Summary magnitude derived from multiple other magnitudes by <a class="reference internal" href="../apps/scmag.html#scmag"><span class="std std-ref">scmag</span></a>.</p>
@ -650,7 +644,7 @@ primary microseisms).</p></li>
</dd>
<dt id="term-miniSeed">miniSeed<a class="headerlink" href="#term-miniSeed" title="Permalink to this term"></a></dt><dd><p>miniSEED is the
standard for the exchange of seismic time series. It uses a fixed record
length and applies data compression as defined in <span id="id10"><em>SEED Reference Manual</em> [<a class="reference internal" href="references.html#id252" title="SEED Reference Manual. USGS, 2012. URL: http://www.fdsn.org/pdf/SEEDManual_V2.4.pdf.">31</a>]</span>.</p>
length and applies data compression as defined in <span id="id10"><em>SEED Reference Manual</em> [<a class="reference internal" href="references.html#id285" title="SEED Reference Manual. USGS, 2012. URL: http://www.fdsn.org/pdf/SEEDManual_V2.4.pdf.">39</a>]</span>.</p>
</dd>
<dt id="term-MMI">MMI<a class="headerlink" href="#term-MMI" title="Permalink to this term"></a></dt><dd><p>Modified Mercalli Intensity</p>
</dd>
@ -761,7 +755,7 @@ data and metadata (<a class="reference internal" href="#term-inventory"><span cl
It is controlled as a standard by the International Federation
of Digital Seismograph Networks (FDSN).
The current version is 2.4, updated August 2012.
Read <span id="id11"><em>SEED Reference Manual</em> [<a class="reference internal" href="references.html#id252" title="SEED Reference Manual. USGS, 2012. URL: http://www.fdsn.org/pdf/SEEDManual_V2.4.pdf.">31</a>]</span> for details.</p>
Read <span id="id11"><em>SEED Reference Manual</em> [<a class="reference internal" href="references.html#id285" title="SEED Reference Manual. USGS, 2012. URL: http://www.fdsn.org/pdf/SEEDManual_V2.4.pdf.">39</a>]</span> for details.</p>
</dd>
<dt id="term-S-phase">S phase<a class="headerlink" href="#term-S-phase" title="Permalink to this term"></a></dt><dd><p>The S phase is the arrival of the direct <a class="reference internal" href="#term-S-wave"><span class="xref std std-term">S wave</span></a> that traveled through the Earths
crust and mantle observed in epicentral distances up to 100°.</p>
@ -858,7 +852,7 @@ most seismic region (5 - 6 % of earthquakes) is the Alpide belt.</p>
</dd>
<dt id="term-root-mean-square-RMS">root mean square (RMS)<a class="headerlink" href="#term-root-mean-square-RMS" title="Permalink to this term"></a></dt><dd><p>Also referred to as <a class="reference internal" href="#term-RMS"><span class="xref std std-term">RMS</span></a>. A statistical measure of the magnitude of a varying quantity defined as</p>
<div class="math">
<p><img src="../_images/math/2f6a630b284c6a5d80008de8acea2f431a388d2c.png" alt="RMS = \sqrt{\frac{{x_1}^2 + {x_2}^2 + {x_3}^2 + ... + {x_n}^2}{N}}"/></p>
<p><img src="../_images/math/2f6a630b284c6a5d80008de8acea2f431a388d2c.svg" alt="RMS = \sqrt{\frac{{x_1}^2 + {x_2}^2 + {x_3}^2 + ... + {x_n}^2}{N}}"/></p>
</div><p>for the time series with the N elements x<sub>1</sub> to x<sub>n</sub>.</p>
</dd>
<dt id="term-rupture-front">rupture front<a class="headerlink" href="#term-rupture-front" title="Permalink to this term"></a></dt><dd><p>The instantaneous boundary between the slipping and locked parts of a fault during
@ -872,7 +866,7 @@ an earthquake.</p>
</dd>
<dt id="term-SCML">SCML<a class="headerlink" href="#term-SCML" title="Permalink to this term"></a></dt><dd><p><a class="reference internal" href="#term-SeisComP"><span class="xref std std-term">SeisComP</span></a> Markup Language. SCML is a flavor of <a class="reference external" href="https://quake.ethz.ch/quakeml/">QuakeML</a> and is used by <cite>SeisComP</cite> and by
products of <a class="reference internal" href="#term-gempa-GmbH"><span class="xref std std-term">gempa GmbH</span></a> for exchange. For details read the
<a class="reference external" href="https://geofon.gfz-potsdam.de/_uml/">UML diagram</a>.</p>
<a class="reference external" href="https://geofon.gfz.de/_uml/">UML diagram</a>.</p>
</dd>
<dt id="term-SDS">SDS<a class="headerlink" href="#term-SDS" title="Permalink to this term"></a></dt><dd><p><cite>SeisComP</cite> Data Structure which is used for archiving waveform data. Below the
base directory of the archive the SDS has the structure:</p>
@ -887,15 +881,15 @@ base directory of the archive the SDS has the structure:</p>
</dd>
<dt id="term-SED">SED<a class="headerlink" href="#term-SED" title="Permalink to this term"></a></dt><dd><p>Specific Energy Density</p>
</dd>
<dt id="term-SeedLink">SeedLink<a class="headerlink" href="#term-SeedLink" title="Permalink to this term"></a></dt><dd><p>SeedLink <span id="id12">[<a class="reference internal" href="references.html#id253" title="seedlink. Real-time waveform server. URL: https://docs.gempa.de/seiscomp/current/apps/seedlink.html.">30</a>]</span> is a
<dt id="term-SeedLink">SeedLink<a class="headerlink" href="#term-SeedLink" title="Permalink to this term"></a></dt><dd><p>SeedLink <span id="id12">[<a class="reference internal" href="references.html#id286" title="seedlink. Real-time waveform server. URL: https://docs.gempa.de/seiscomp/current/apps/seedlink.html.">38</a>]</span> is a
real-time data acquisition protocol and a client-server software that
implements this protocol</p>
</dd>
<dt id="term-SeisComP">SeisComP<a class="headerlink" href="#term-SeisComP" title="Permalink to this term"></a></dt><dd><p>SeisComP is likely the most widely distributed software package for
seismological data acquisition and real-time data exchange over internet.
Its data transmission protocol SeedLink became a de facto world standard.
The first version of SeisComP was developed for the <a class="reference external" href="http://geofon.gfz-potsdam.de/geofon/">GEOFON</a> network and further extended
within the MEREDIAN project under the lead of <a class="reference external" href="http://geofon.gfz-potsdam.de/geofon/">GEOFON</a>/<a class="reference external" href="http://www.gfz-potsdam.de/">GFZ</a> Potsdam and <a class="reference external" href="http://www.orfeus-eu.org/">ORFEUS</a>. Originally SeisComP was designed as a high
The first version of SeisComP was developed for the <a class="reference external" href="http://geofon.gfz.de">GEOFON</a> network and further extended within the MEREDIAN
project under the lead of <a class="reference external" href="http://geofon.gfz.de">GEOFON</a>/<a class="reference external" href="http://www.gfz.de">GFZ</a> Potsdam and <a class="reference external" href="http://www.orfeus-eu.org/">ORFEUS</a>. Originally SeisComP was designed as a high
standard fully automatic data acquisition and (near-)real-time data
processing tool including quality control, event detection and location as
well as dissemination of event alerts. In the context of the <a class="reference external" href="http://www.gitews.de/">GITEWS</a> project (German Indian Ocean Tsunami Early
@ -922,26 +916,26 @@ location of a strong earthquake in the future.</p>
</dd>
<dt id="term-seismic-moment-M0">seismic moment (M<sub>0</sub>)<a class="headerlink" href="#term-seismic-moment-M0" title="Permalink to this term"></a></dt><dd><p>The seismic moment is defined as</p>
<div class="math">
<p><img src="../_images/math/8f1708ea69c95606206a9c9491a7664a7d3ebcfc.png" alt="M_0 = \mu D A"/></p>
<p><img src="../_images/math/8f1708ea69c95606206a9c9491a7664a7d3ebcfc.svg" alt="M_0 = \mu D A"/></p>
</div><p>with μ as rigidity of the rock at the fault, D as averaged displacement on the
fault and A as fault surface area. For pure shear sources, M<sub>0</sub> equals
the <a class="reference internal" href="#term-total-seismic-moment-MT"><span class="xref std std-term">total seismic moment (MT)</span></a>.
The seismic moment can be related to the released seismic energy ES that is
proportional to the stress drop Δσ:</p>
<div class="math">
<p><img src="../_images/math/045405e3ed4451fb8c73dfa60cf0db9d9c09b15e.png" alt="E_S \approx 0.5 \Delta\sigma D A"/></p>
<p><img src="../_images/math/045405e3ed4451fb8c73dfa60cf0db9d9c09b15e.svg" alt="E_S \approx 0.5 \Delta\sigma D A"/></p>
</div><p>Rearranging both equations yields to:</p>
<div class="math">
<p><img src="../_images/math/bfb9920a001f8f2088e3444b21712bc8ce7eea27.png" alt="E_S \approx \frac{\Delta\sigma}{2\mu} M_0"/></p>
<p><img src="../_images/math/bfb9920a001f8f2088e3444b21712bc8ce7eea27.svg" alt="E_S \approx \frac{\Delta\sigma}{2\mu} M_0"/></p>
</div><p>M<sub>0</sub> can be determined by the asymptote of the amplitude spectrum at
frequency = 0.
A common technique for determination of the seismic moment M<sub>0</sub> is the
moment tensor inversion. Assuming reasonable values for the rigidity of the
rock (3-6 x 104 MPa in crust and upper mantle) and the stress drop (2-6 MPa)
the seismic moment can be related to the surface wave magnitude Ms by the
empirical relationship found by <span id="id14">Gutenberg and Richter [<a class="reference internal" href="references.html#id36" title="B. Gutenberg and C.F. Richter. Magnitude and Energy of Earthquakes. Annals of Geophysics, 9(1):1 - 15, 1956. URL: https://resolver.caltech.edu/CaltechAUTHORS:20140130-105324849, doi:10.4401/ag-5590.">43</a>]</span> (units in cgs):</p>
empirical relationship found by <span id="id14">Gutenberg and Richter [<a class="reference internal" href="references.html#id51" title="B. Gutenberg and C.F. Richter. Magnitude and Energy of Earthquakes. Annals of Geophysics, 9(1):1 - 15, 1956. URL: https://resolver.caltech.edu/CaltechAUTHORS:20140130-105324849, doi:10.4401/ag-5590.">51</a>]</span> (units in cgs):</p>
<div class="math">
<p><img src="../_images/math/d7e59ce0e8d9250bee9b829d4a243edee8473113.png" alt="\log E_S = 11.8 + 1.5 Ms
<p><img src="../_images/math/d7e59ce0e8d9250bee9b829d4a243edee8473113.svg" alt="\log E_S = 11.8 + 1.5 Ms
\log M_0 = 1.5 Ms + 16.1"/></p>
</div></dd>
@ -1060,7 +1054,7 @@ to the equivalent representation in the frequency domain) (see also Fourier anal
</dd>
<dt id="term-total-seismic-moment-MT">total seismic moment (MT)<a class="headerlink" href="#term-total-seismic-moment-MT" title="Permalink to this term"></a></dt><dd><p>A measure of the strength of the full <a class="reference internal" href="#term-moment-tensor"><span class="xref std std-term">moment tensor</span></a>:</p>
<div class="math">
<p><img src="../_images/math/1712005c894ef6c6244697d1123cc2c090368cb3.png" alt="M_T = \sqrt{\sum_{ij}M_{ij}M_{ij}/2}"/></p>
<p><img src="../_images/math/1712005c894ef6c6244697d1123cc2c090368cb3.svg" alt="M_T = \sqrt{\sum_{ij}M_{ij}M_{ij}/2}"/></p>
</div><p>For pure shear sources M<sub>T</sub> equals <a class="reference internal" href="#term-seismic-moment-M0"><span class="xref std std-term">seismic moment (M0)</span></a>.</p>
</dd>
<dt id="term-transfer-function">transfer function<a class="headerlink" href="#term-transfer-function" title="Permalink to this term"></a></dt><dd><p>The transfer function of a seismic sensor-recorder system (or of the Earth
@ -1162,17 +1156,17 @@ wave (for example, crest to crest or trough to trough).</p>
effect of the referenced object (e.g. Pick).</p>
</dd>
<dt id="term-Wood-Anderson-seismometer">Wood-Anderson seismometer<a class="headerlink" href="#term-Wood-Anderson-seismometer" title="Permalink to this term"></a></dt><dd><p>Torsion seismometer recording horizontal displacement
<a class="reference internal" href="#term-amplitude"><span class="xref std std-term">amplitudes</span></a> described in <span id="id15">Richter [<a class="reference internal" href="references.html#id62" title="C.F. Richter. An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am., 1:1 - 32, 1935. URL: https://resolver.caltech.edu/CaltechAUTHORS:20140804-143558638, doi:10.1785/BSSA0250010001.">57</a>]</span> and
<span id="id16">Uhrhammer and Collins [<a class="reference internal" href="references.html#id81" title="R.A. Uhrhammer and E.R. Collins. Synthesis of Wood-Anderson seismograms from broadband digital records. Bull. Seismol. Soc. Am., 80(3):702716, 1990. doi:10.1785/BSSA0800030702.">64</a>]</span>. Simulation of the Wood-Anderson seismometer is
<a class="reference internal" href="#term-amplitude"><span class="xref std std-term">amplitudes</span></a> described in <span id="id15">Richter [<a class="reference internal" href="references.html#id81" title="C.F. Richter. An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am., 1:1 - 32, 1935. URL: https://resolver.caltech.edu/CaltechAUTHORS:20140804-143558638, doi:10.1785/BSSA0250010001.">66</a>]</span> and
<span id="id16">Uhrhammer and Collins [<a class="reference internal" href="references.html#id104" title="R.A. Uhrhammer and E.R. Collins. Synthesis of Wood-Anderson seismograms from broadband digital records. Bull. Seismol. Soc. Am., 80(3):702716, 1990. doi:10.1785/BSSA0800030702.">73</a>]</span>. Simulation of the Wood-Anderson seismometer is
used for measuring amplitudes for selected <a class="reference internal" href="#term-magnitude"><span class="xref std std-term">magnitudes</span></a>.
SeisComP3 and SeisComP in versions 4 and 5 have considered Wood-Anderson
instrument parameters originally published by <span id="id17">Richter [<a class="reference internal" href="references.html#id62" title="C.F. Richter. An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am., 1:1 - 32, 1935. URL: https://resolver.caltech.edu/CaltechAUTHORS:20140804-143558638, doi:10.1785/BSSA0250010001.">57</a>]</span> with
instrument parameters originally published by <span id="id17">Richter [<a class="reference internal" href="references.html#id81" title="C.F. Richter. An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am., 1:1 - 32, 1935. URL: https://resolver.caltech.edu/CaltechAUTHORS:20140804-143558638, doi:10.1785/BSSA0250010001.">66</a>]</span> with
gain = 2800, T0 = 0.8 s, h = 0.8. However, updated parameters where
published by <span id="id18">Uhrhammer and Collins [<a class="reference internal" href="references.html#id81" title="R.A. Uhrhammer and E.R. Collins. Synthesis of Wood-Anderson seismograms from broadband digital records. Bull. Seismol. Soc. Am., 80(3):702716, 1990. doi:10.1785/BSSA0800030702.">64</a>]</span> with gain = 2080, T0 = 0.8 s,
published by <span id="id18">Uhrhammer and Collins [<a class="reference internal" href="references.html#id104" title="R.A. Uhrhammer and E.R. Collins. Synthesis of Wood-Anderson seismograms from broadband digital records. Bull. Seismol. Soc. Am., 80(3):702716, 1990. doi:10.1785/BSSA0800030702.">73</a>]</span> with gain = 2080, T0 = 0.8 s,
h = 0.7. These values were part of the IASPEI Magnitude Working Group
recommendations of 2011 September 9 and therefore apply by default in later
versions of SeisComP. With the original set of values
<span id="id19">[<a class="reference internal" href="references.html#id62" title="C.F. Richter. An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am., 1:1 - 32, 1935. URL: https://resolver.caltech.edu/CaltechAUTHORS:20140804-143558638, doi:10.1785/BSSA0250010001.">57</a>]</span>, magnitudes are systematically overestimated by 0.13.
<span id="id19">[<a class="reference internal" href="references.html#id81" title="C.F. Richter. An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am., 1:1 - 32, 1935. URL: https://resolver.caltech.edu/CaltechAUTHORS:20140804-143558638, doi:10.1785/BSSA0250010001.">66</a>]</span>, magnitudes are systematically overestimated by 0.13.
Wood-Anderson seismometers can be simulated by filtering waveforms with
<a class="reference internal" href="filter-grammar.html#WA" title="WA"><code class="xref py py-func docutils literal notranslate"><span class="pre">WA()</span></code></a>.</p>
</dd>
@ -1261,7 +1255,7 @@ seismic station or any other site to the hypocentre of the seismic event.</p>
</a>
<div class="stretched align-center fitted content">
<div>
Version <b>6.9.0</b> Release
Version <b>7.0.0</b> Development
</div>
<div class="copyright">
Copyright &copy; gempa GmbH, GFZ Potsdam.