[installation] Change to nightly

This commit is contained in:
2025-10-30 12:04:59 +01:00
parent 2ff097f9d1
commit a31bc45cce
1441 changed files with 60368 additions and 56360 deletions

View File

@ -4,7 +4,7 @@
<head>
<meta charset="utf-8" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Magnitudes &#8212; SeisComP Release documentation</title>
<title>Amplitudes and Magnitudes &#8212; SeisComP Development documentation</title>
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/seiscomp.css" type="text/css" />
<link rel="stylesheet" type="text/css" href="../../_static/pygments.css?v=72bcf2f2" />
@ -12,7 +12,7 @@
<link rel="stylesheet" type="text/css" href="../../_static/graphviz.css?v=eafc0fe6" />
<script type="text/javascript" src="../../_static/seiscomp.js"></script>
<script type="text/javascript" id="documentation_options" data-url_root="../../" src="../../_static/documentation_options.js"></script>
<script data-url_root="../../" id="documentation_options" src="../../_static/documentation_options.js?v=823bb831"></script>
<script data-url_root="../../" id="documentation_options" src="../../_static/documentation_options.js?v=744d344a"></script>
<script src="../../_static/doctools.js?v=888ff710"></script>
<script src="../../_static/sphinx_highlight.js?v=4825356b"></script>
<link rel="index" title="Index" href="../../genindex.html" />
@ -25,8 +25,8 @@
<div class="container">
<div class="brand">
<img class="logo" src="../../_static/brands/seiscomp/text/white.svg"/>
<!-- span class="title">SeisComP Release</span -->
<span class="version">6.9.0</span>
<!-- span class="title">SeisComP Development</span -->
<span class="version">7.0.0</span>
</div>
</div>
</div>
@ -69,46 +69,118 @@
<div class="fitted content" id="anchors-container">
<div class="body" role="main">
<section id="magnitudes">
<span id="concepts-magnitudes"></span><h1>Magnitudes<a class="headerlink" href="#magnitudes" title="Permalink to this heading"></a></h1>
<p>Magnitudes are computed based on amplitudes measured from waveforms. Different
types of amplitudes and magnitudes are available which are listed in
<a class="reference internal" href="../../apps/scamp.html#scamp"><span class="std std-ref">scamp</span></a> and <a class="reference internal" href="../../apps/scmag.html#scmag"><span class="std std-ref">scmag</span></a>.</p>
<section id="amplitudes-and-magnitudes">
<span id="concepts-magnitudes"></span><h1>Amplitudes and Magnitudes<a class="headerlink" href="#amplitudes-and-magnitudes" title="Permalink to this heading"></a></h1>
<p><a class="reference internal" href="#concepts-magnitudes-station"><span class="std std-ref">Magnitudes of specific types</span></a> are computed
from <a class="reference internal" href="#concepts-magnitudes-amplitudes"><span class="std std-ref">amplitudes</span></a> measured on waveforms.
Different types of amplitudes and magnitudes are available including aliases.
All magnitudes can be regionalized and mapped to Mw. The native amplitude and
magnitudes types are listed in <a class="reference internal" href="../../apps/scamp.html#scamp"><span class="std std-ref">scamp</span></a> and <a class="reference internal" href="../../apps/scmag.html#scmag"><span class="std std-ref">scmag</span></a>.</p>
<p>All amplitude and magnitude values can be read in the Magnitudes tab of
<a class="reference internal" href="../../apps/scolv.html#scolv"><span class="std std-ref">scolv</span></a>, in bulletins created by <a class="reference internal" href="../../apps/scbulletin.html#scbulletin"><span class="std std-ref">scbulletin</span></a> and dumped
from database to XML for an origin or event by <a class="reference internal" href="../../apps/scxmldump.html#scxmldump"><span class="std std-ref">scxmldump</span></a>.</p>
<p>This concept section describes the principles applied in <cite>SeisComP</cite> and links to
more specific sections including tutorials describing the configuration and
application.</p>
<figure class="align-center" id="id6">
<a class="reference internal image-reference" href="../../_images/amplitude-magnitude-processing.png"><img alt="amplitudes and magnitudes: processing flow" src="../../_images/amplitude-magnitude-processing.png" style="width: 18cm;" /></a>
<figcaption>
<p><span class="caption-text">Schematic processing flow for computing magnitudes from measured amplitudes
including the involved <cite>SeisComP</cite> modules and interfaces. Multiple network
magnitude types can be computed for the same <a class="reference internal" href="../glossary.html#term-origin"><span class="xref std std-term">origin</span></a>. The default
processing of native amplitudes and magnitudes in the center can be extended
by aliases, regionalization, Mw mapping or external magnitudes.</span><a class="headerlink" href="#id6" title="Permalink to this image"></a></p>
</figcaption>
</figure>
<section id="amplitudes">
<h2>Amplitudes<a class="headerlink" href="#amplitudes" title="Permalink to this heading"></a></h2>
<p>Amplitudes can be measured automatically from waveforms</p>
<span id="concepts-magnitudes-amplitudes"></span><h2>Amplitudes<a class="headerlink" href="#amplitudes" title="Permalink to this heading"></a></h2>
<p>Amplitudes can be measured on waveforms</p>
<ul class="simple">
<li><p>During phase picking by <a class="reference internal" href="../../apps/scautopick.html#scautopick"><span class="std std-ref">scautopick</span></a> with generally fixed time windows
due to the absence of knowledge about source parameters or by,</p></li>
<li><p><a class="reference internal" href="../../apps/scamp.html#scamp"><span class="std std-ref">scamp</span></a> as soon as <a class="reference internal" href="../glossary.html#term-origin"><span class="xref std std-term">origins</span></a> are available. Depending
on the magnitude type, fixed or distance-dependent time windows apply.</p></li>
<li><p>Automatically during phase picking by <a class="reference internal" href="../../apps/scautopick.html#scautopick"><span class="std std-ref">scautopick</span></a> with generally fixed
time windows due to the absence of knowledge about source parameters.</p></li>
<li><p>Automatically by <a class="reference internal" href="../../apps/scamp.html#scamp"><span class="std std-ref">scamp</span></a> as soon as <a class="reference internal" href="../glossary.html#term-origin"><span class="xref std std-term">origins</span></a> are
available. Depending on the amplitude type and their configuration, fixed or
distance-dependent time windows as well as constraints on signal quality apply.</p></li>
<li><p>Interactively using <a class="reference internal" href="../../apps/scolv.html#scolv"><span class="std std-ref">scolv</span></a> with preset or user-defined conditions.</p></li>
</ul>
<p>and interactively using <a class="reference internal" href="../../apps/scolv.html#scolv"><span class="std std-ref">scolv</span></a>.</p>
<section id="instrument-simulation">
<h3>Instrument simulation<a class="headerlink" href="#instrument-simulation" title="Permalink to this heading"></a></h3>
<p>Amplitude measurements for some magnitude types require or allow the simulation
<p><a class="reference internal" href="../time-grammar.html#time-grammar"><span class="std std-ref">Time grammar</span></a> applies for configuring the time windows.</p>
<section id="input-data">
<h3>Input data<a class="headerlink" href="#input-data" title="Permalink to this heading"></a></h3>
<p>Depending on type amplitudes are measured on raw or filtered waveform data.
Initial raw data are given in counts of the digitizer with a stream gain unit of
m/s which is typical for seismometers.
It is assumed that the measured signal has its dominant
frequency where the response of the recording instrument is flat.
For other instruments such as accelerometers or short-period geophones, amplitude
correction for instrument response and the corresponding frequency range may be
configured by the global binding parameters
<a class="reference internal" href="../../apps/global.html#confval-amplitudes.enableResponses"><code class="xref std std-confval docutils literal notranslate"><span class="pre">amplitudes.enableResponses</span></code></a>, <a class="reference internal" href="../../apps/global.html#confval-amplitudes.resp.minFreq"><code class="xref std std-confval docutils literal notranslate"><span class="pre">amplitudes.resp.minFreq</span></code></a>,
<a class="reference internal" href="../../apps/global.html#confval-amplitudes.resp.maxFreq"><code class="xref std std-confval docutils literal notranslate"><span class="pre">amplitudes.resp.maxFreq</span></code></a> or even with in amplitude-type profiles for
more specific application. Amplitude measurements will fail if the
unit of the (corrected) input data do not correspond to the requirement of the
amplitude type.</p>
<p>Filtering may involve
<a class="reference internal" href="#concepts-magnitudes-wa"><span class="std std-ref">simulation of Wood-Anderson seismographs</span></a>.
Final amplitude measurements are corrected by stream gain and provided as an
amplitude object.</p>
</section>
<section id="wood-anderson-simulation">
<span id="concepts-magnitudes-wa"></span><h3>Wood-Anderson simulation<a class="headerlink" href="#wood-anderson-simulation" title="Permalink to this heading"></a></h3>
<p>Some amplitude types require or allow the correction of waveforms by simulation
of instruments such as <a class="reference internal" href="../filter-grammar.html#WA" title="WA"><code class="xref py py-func docutils literal notranslate"><span class="pre">Wood-Anderson</span> <span class="pre">torsion</span> <span class="pre">seismometers</span></code></a>
(<span id="id1">Richter [<a class="reference internal" href="../references.html#id62" title="C.F. Richter. An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am., 1:1 - 32, 1935. URL: https://resolver.caltech.edu/CaltechAUTHORS:20140804-143558638, doi:10.1785/BSSA0250010001.">57</a>], Uhrhammer and Collins [<a class="reference internal" href="../references.html#id81" title="R.A. Uhrhammer and E.R. Collins. Synthesis of Wood-Anderson seismograms from broadband digital records. Bull. Seismol. Soc. Am., 80(3):702716, 1990. doi:10.1785/BSSA0800030702.">64</a>]</span>), <a class="reference internal" href="../filter-grammar.html#WWSSN_SP" title="WWSSN_SP"><code class="xref py py-func docutils literal notranslate"><span class="pre">WWSSN_SP()</span></code></a> or <a class="reference internal" href="../filter-grammar.html#WWSSN_LP" title="WWSSN_LP"><code class="xref py py-func docutils literal notranslate"><span class="pre">WWSSN_LP()</span></code></a>.
The calibration parameters describing the Wood-Anderson seismometer are
configurable in global bindings or global module configuration:
(<span id="id1">Richter [<a class="reference internal" href="../references.html#id81" title="C.F. Richter. An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am., 1:1 - 32, 1935. URL: https://resolver.caltech.edu/CaltechAUTHORS:20140804-143558638, doi:10.1785/BSSA0250010001.">66</a>], Uhrhammer and Collins [<a class="reference internal" href="../references.html#id104" title="R.A. Uhrhammer and E.R. Collins. Synthesis of Wood-Anderson seismograms from broadband digital records. Bull. Seismol. Soc. Am., 80(3):702716, 1990. doi:10.1785/BSSA0800030702.">73</a>]</span>), <a class="reference internal" href="../filter-grammar.html#WWSSN_SP" title="WWSSN_SP"><code class="xref py py-func docutils literal notranslate"><span class="pre">WWSSN_SP()</span></code></a> or <a class="reference internal" href="../filter-grammar.html#WWSSN_LP" title="WWSSN_LP"><code class="xref py py-func docutils literal notranslate"><span class="pre">WWSSN_LP()</span></code></a>.
The calibration parameters describing a Wood-Anderson seismometer are
configurable in global bindings or module configuration:
<a class="reference internal" href="../../apps/global.html#confval-2"><code class="xref std std-confval docutils literal notranslate"><span class="pre">amplitudes.WoodAnderson.gain</span></code></a>, <a class="reference internal" href="../../apps/global.html#confval-3"><code class="xref std std-confval docutils literal notranslate"><span class="pre">amplitudes.WoodAnderson.T0</span></code></a>,
<a class="reference internal" href="../../apps/global.html#confval-4"><code class="xref std std-confval docutils literal notranslate"><span class="pre">amplitudes.WoodAnderson.h</span></code></a>. Specifically, the difference in magnitude
due to configuration using original values listed in
<span id="id2">Richter [<a class="reference internal" href="../references.html#id62" title="C.F. Richter. An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am., 1:1 - 32, 1935. URL: https://resolver.caltech.edu/CaltechAUTHORS:20140804-143558638, doi:10.1785/BSSA0250010001.">57</a>]</span> and updated ones given in <span id="id3">Uhrhammer and Collins [<a class="reference internal" href="../references.html#id81" title="R.A. Uhrhammer and E.R. Collins. Synthesis of Wood-Anderson seismograms from broadband digital records. Bull. Seismol. Soc. Am., 80(3):702716, 1990. doi:10.1785/BSSA0800030702.">64</a>]</span>
<span id="id2">Richter [<a class="reference internal" href="../references.html#id81" title="C.F. Richter. An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am., 1:1 - 32, 1935. URL: https://resolver.caltech.edu/CaltechAUTHORS:20140804-143558638, doi:10.1785/BSSA0250010001.">66</a>]</span> and updated ones given in <span id="id3">Uhrhammer and Collins [<a class="reference internal" href="../references.html#id104" title="R.A. Uhrhammer and E.R. Collins. Synthesis of Wood-Anderson seismograms from broadband digital records. Bull. Seismol. Soc. Am., 80(3):702716, 1990. doi:10.1785/BSSA0800030702.">73</a>]</span>
result in a constant offset of 0.13 in those magnitudes which apply
Wood-Anderson simulation, e.g. <a class="reference internal" href="../glossary.html#term-magnitude-local-ML"><span class="xref std std-term">ML</span></a>,
<a class="reference internal" href="../glossary.html#term-magnitude-local-vertical-MLv"><span class="xref std std-term">MLv</span></a>, <a class="reference internal" href="../glossary.html#term-magnitude-local-custom-MLc"><span class="xref std std-term">MLc</span></a>.</p>
</section>
<section id="physical-units">
<h3>Physical units<a class="headerlink" href="#physical-units" title="Permalink to this heading"></a></h3>
<p>The physical units of measured amplitudes depend on amplitudes type. They are
documented along with the corresponding magnitude type. Starting with the initial
gain unit of raw data streams, typically m/s, the amplitude processor in
<cite>SeisComP</cite> converts to the required unit. Where instrument simulation if optional,
e.g., for <a class="reference internal" href="../glossary.html#term-magnitude-local-custom-MLc"><span class="xref std std-term">MLc amplitudes</span></a>, a conversion
configurable factor must be considered for non-default amplitude processing.</p>
</section>
<section id="amplitude-aliases">
<span id="concepts-amplitudes-aliases"></span><h3>Amplitude Aliases<a class="headerlink" href="#amplitude-aliases" title="Permalink to this heading"></a></h3>
<p>New amplitude types (aliases) can be created based on existing amplitude types
but configured and measured specifically. They can be measured as any other
amplitude by <a class="reference internal" href="../../apps/scamp.html#scamp"><span class="std std-ref">scamp</span></a> or <a class="reference internal" href="../../apps/scautopick.html#scautopick"><span class="std std-ref">scautopick</span></a> and used by other modules, e.g.,
by <a class="reference internal" href="../../apps/scmag.html#scmag"><span class="std std-ref">scmag</span></a> for <a class="reference internal" href="#concepts-magnitudes-station"><span class="std std-ref">magnitude aliases</span></a>. The
setup procedure is outlined in the tutorial on
<a class="reference internal" href="../tutorials/amplitudes-magnitudes.html#tutorials-amplitude-aliases"><span class="std std-ref">amplitude aliases</span></a>.</p>
</section>
<section id="regionalization">
<span id="concepts-amplitudes-regionalization"></span><h3>Regionalization<a class="headerlink" href="#regionalization" title="Permalink to this heading"></a></h3>
<p>Measuring amplitudes only for sources or pairs of sources and stations in
specific regions is supported by regionalization. The region polygons are
defined by <a class="reference internal" href="#concepts-magnitudes-regionalization"><span class="std std-ref">magnitude regionalization</span></a>.
In order to use the feature, regionalized amplitudes and magnitudes must have
the same type (name) and regionalization must be activated per amplitude type in
amplitude-type profiles of global bindings.</p>
</section>
</section>
<section id="station-magnitudes">
<h2>Station Magnitudes<a class="headerlink" href="#station-magnitudes" title="Permalink to this heading"></a></h2>
<span id="concepts-magnitudes-station"></span><h2>Station Magnitudes<a class="headerlink" href="#station-magnitudes" title="Permalink to this heading"></a></h2>
<p>Station magnitudes are computed automatically by <a class="reference internal" href="../../apps/scmag.html#scmag"><span class="std std-ref">scmag</span></a> or interactively
by <a class="reference internal" href="../../apps/scolv.html#scolv"><span class="std std-ref">scolv</span></a> from measured amplitudes based on distance-dependent
calibration curves which depend on magnitude type. When computing a set of
magnitudes in <a class="reference internal" href="../../apps/scolv.html#scolv"><span class="std std-ref">scolv</span></a> which is different from the set configured in
<a class="reference internal" href="../../apps/scmag.html#scmag"><span class="std std-ref">scmag</span></a>, then scmag may later add the missing magnitudes automatically.
Magnitude types for which the evaluation status is set to “rejected”, e.g., in
scolv, will not be recomputed by scmag.</p>
calibration curves which depend on magnitude type. Since distance measures are
required, station magnitudes are always related to one <a class="reference internal" href="../glossary.html#term-origin"><span class="xref std std-term">origin</span></a>. For
computing new magnitudes in scolv, a new origin must be created which is done by
relocating.</p>
<p>When computing a set of station magnitudes in <a class="reference internal" href="../../apps/scolv.html#scolv"><span class="std std-ref">scolv</span></a> which is different from
the set configured in <a class="reference internal" href="../../apps/scmag.html#scmag"><span class="std std-ref">scmag</span></a>, then scmag may later add the missing
magnitudes automatically. Magnitude types for which the evaluation status is
set to “rejected”, e.g., in <a class="reference internal" href="../../apps/scolv.html#scolv"><span class="std std-ref">scolv</span></a>, will not be recomputed by scmag. In
order to ignore a magnitude type interactively, it should therefore be treated
and rejected in scolv.</p>
<section id="station-corrections">
<span id="concepts-magnitudes-correction"></span><h3>Station corrections<a class="headerlink" href="#station-corrections" title="Permalink to this heading"></a></h3>
<p>Linear station corrections applied to station magnitudes can be configured by
@ -120,7 +192,7 @@ magnitude itself,</p></li>
</ol>
<p>When using binding profiles, all referencing stations will be affected equally
which is typically not intended. In contrast, applying station bindings requires
to set up many bindings which may not be intended either.</p>
to set up many bindings which may not be intended either.concepts-magnitudes-regionalization</p>
<p>Therefore, you may add lines to the global module configuration in
<code class="file docutils literal notranslate"><span class="pre">global.cfg</span></code> where one line corresponds to one station with one magnitude
and the corresponding correction parameter. The groups and the name of the
@ -138,35 +210,20 @@ by direclty editing the configuration file, e.g.,
<code class="file docutils literal notranslate"><span class="pre">seiscomp/etc/global.cfg</span></code>.</p>
</div>
</section>
<section id="magnitude-aliases">
<span id="concepts-magnitudes-aliases"></span><h3>Magnitude Aliases<a class="headerlink" href="#magnitude-aliases" title="Permalink to this heading"></a></h3>
<p>New magnitude types (aliases) can be created inheriting the configuration
parameters but not the configured values from existing magnitude and amplitude types or
<a class="reference internal" href="#concepts-amplitudes-aliases"><span class="std std-ref">amplitude aliases</span></a>. The values are configured
specifically. Unless specified explicitly, the amplitude type
is the base amplitude of the original magnitude. Other
amplitude types or amplitude aliases must be defined first and given explicitly.
The aliased magnitudes can be computed by other modules such as <a class="reference internal" href="../../apps/scmag.html#scmag"><span class="std std-ref">scmag</span></a> or
<a class="reference internal" href="../../apps/scolv.html#scolv"><span class="std std-ref">scolv</span></a>. The setup procedure is outlined in the tutorial on
<a class="reference internal" href="../tutorials/amplitudes-magnitudes.html#tutorials-magnitude-aliases"><span class="std std-ref">magnitude aliases</span></a>.</p>
</section>
<section id="network-magnitudes">
<h2>Network Magnitudes<a class="headerlink" href="#network-magnitudes" title="Permalink to this heading"></a></h2>
<p>Network magnitudes are computed automatically by <a class="reference internal" href="../../apps/scmag.html#scmag"><span class="std std-ref">scmag</span></a> or interactively
by <a class="reference internal" href="../../apps/scolv.html#scolv"><span class="std std-ref">scolv</span></a> from station magnitudes based on averaging station magnitudes.
The averaging methods applied by <a class="reference internal" href="../../apps/scmag.html#scmag"><span class="std std-ref">scmag</span></a> are configurable by
<a class="reference internal" href="../../apps/scmag.html#confval-magnitudes.average"><code class="xref std std-confval docutils literal notranslate"><span class="pre">magnitudes.average</span></code></a>. Available are (<span id="id4">Rosenberger and Gasko [<a class="reference internal" href="../references.html#id70" title="J.L. Rosenberger and M. Gasko. Comparing location estimators: trimmed means, medians, and trimean. In D.C. Hoaglin, F. Mosteller, and J.W. Tukey, editors, Understanding Robust and Exploratory Data Analysis, pages 297-336. Wiley, New York, NY, 1983.">59</a>]</span>):</p>
<ul class="simple">
<li><p><em>mean</em>: the mean value from all station magnitudes.</p></li>
<li><p><em>median</em>: the mean value from all station magnitudes.</p></li>
<li><p><em>trimmedMean(X)</em>: gnores outlier station magnitudes by first removing the
largest and the smallest <em>X</em> % of the observed values (percentiles). The mean is
formed from the remaining station magnitudes.</p></li>
<li><p><em>trimmedMedian(X)</em>: forms the median from all station magnitudes but returns
the uncertainty by ignoring the largest and the smallest <em>X</em> % station
magnitudes.</p></li>
<li><p><em>medianTrimmedMean(X)</em>: returns the mean magnitude from all station magnitudes
differing less than <em>X</em> magnitudes from the median.</p></li>
</ul>
</section>
<section id="aliases">
<h2>Aliases<a class="headerlink" href="#aliases" title="Permalink to this heading"></a></h2>
<p>New magnitude types (aliases) can be created based on existing magnitude and
amplitude types but configured specifically.
The setup procedure is outlined in the
<a class="reference internal" href="../tutorials/magnitude-regionalization.html#tutorials-magnitude-aliases"><span class="std std-ref">tutorial on magnitude aliases</span></a>.</p>
</section>
<section id="regionalization">
<span id="concepts-magnitudes-regionalization"></span><h2>Regionalization<a class="headerlink" href="#regionalization" title="Permalink to this heading"></a></h2>
<section id="concepts-magnitudes-regionalization">
<span id="id4"></span><h3>Regionalization<a class="headerlink" href="#concepts-magnitudes-regionalization" title="Permalink to this heading"></a></h3>
<p>The computation of station magnitudes can be regionalized. This means that for
a specific region specific conditions apply when computing magnitudes. The
conditions include any parameter available for configuring a magnitude
@ -179,16 +236,36 @@ section of global module configuration parameters. Regionalization assumes
defaults from global bindings but overrides the values when configured. The
setup procedure including
<a class="reference internal" href="#concepts-magnitudes-correction"><span class="std std-ref">station corrections</span></a> is outlined in the
<a class="reference internal" href="../tutorials/magnitude-regionalization.html#tutorials-magnitude-region-aliases"><span class="std std-ref">tutorial on regionalization</span></a>.</p>
<a class="reference internal" href="../tutorials/amplitudes-magnitudes.html#tutorials-magnitude-region-aliases"><span class="std std-ref">tutorial on regionalization</span></a>.</p>
</section>
</section>
<section id="network-magnitudes">
<span id="concepts-magnitudes-network"></span><h2>Network Magnitudes<a class="headerlink" href="#network-magnitudes" title="Permalink to this heading"></a></h2>
<p>Network magnitudes are computed automatically by <a class="reference internal" href="../../apps/scmag.html#scmag"><span class="std std-ref">scmag</span></a> or interactively
by <a class="reference internal" href="../../apps/scolv.html#scolv"><span class="std std-ref">scolv</span></a> from station magnitudes based on averaging station magnitudes.
The averaging methods applied by <a class="reference internal" href="../../apps/scmag.html#scmag"><span class="std std-ref">scmag</span></a> are configurable by
<a class="reference internal" href="../../apps/scmag.html#confval-magnitudes.average"><code class="xref std std-confval docutils literal notranslate"><span class="pre">magnitudes.average</span></code></a>. Available are (<span id="id5">Rosenberger and Gasko [<a class="reference internal" href="../references.html#id91" title="J.L. Rosenberger and M. Gasko. Comparing location estimators: trimmed means, medians, and trimean. In D.C. Hoaglin, F. Mosteller, and J.W. Tukey, editors, Understanding Robust and Exploratory Data Analysis, pages 297-336. Wiley, New York, NY, 1983.">68</a>]</span>):</p>
<ul class="simple">
<li><p><em>mean</em>: The mean value from all station magnitudes.</p></li>
<li><p><em>median</em>: The mean value from all station magnitudes.</p></li>
<li><p><em>trimmedMean(X)</em>: Ignores outlier station magnitudes by first removing the
largest and the smallest <em>X</em> % of the observed values (percentiles). The mean is
formed from the remaining station magnitudes.</p></li>
<li><p><em>trimmedMedian(X)</em>: Forms the median from all station magnitudes but returns
the uncertainty by ignoring the largest and the smallest <em>X</em> % station
magnitudes.</p></li>
<li><p><em>medianTrimmedMean(X)</em>: Returns the mean magnitude from all station magnitudes
differing less than <em>X</em> magnitudes from the median.</p></li>
</ul>
</section>
<section id="moment-magnitudes">
<h2>Moment Magnitudes<a class="headerlink" href="#moment-magnitudes" title="Permalink to this heading"></a></h2>
<span id="concepts-magnitudes-moment"></span><h2>Moment Magnitudes<a class="headerlink" href="#moment-magnitudes" title="Permalink to this heading"></a></h2>
<p>Moment magnitudes can be derived from all other network magnitudes by mapping of
the original network magnitude, e.g., <em>Mx</em>, to a new moment magnitude <em>Mw(Mx)</em>.</p>
<p>The mapping function can be configured for all original magnitude types except
<a class="reference internal" href="../glossary.html#term-magnitude-derived-mB-Mw-mB"><span class="xref std std-term">mB</span></a> and
<a class="reference internal" href="../glossary.html#term-magnitude-derived-Mwp-Mw-Mwp"><span class="xref std std-term">Mwp</span></a> where the mapping is hardcoded.
Read the <a class="reference internal" href="../tutorials/magnitude-regionalization.html#tutorials-mags-moment"><span class="std std-ref">tutorial on moment magnitudes</span></a> for the
Read the <a class="reference internal" href="../tutorials/amplitudes-magnitudes.html#tutorials-mags-moment"><span class="std std-ref">tutorial on moment magnitudes</span></a> for the
configuration.</p>
</section>
<section id="summary-magnitude">
@ -205,7 +282,7 @@ usually referred to as <em>M</em>. The name is configurable.</p>
</div>
</section>
<section id="preferred-magnitude">
<h2>Preferred Magnitude<a class="headerlink" href="#preferred-magnitude" title="Permalink to this heading"></a></h2>
<span id="concepts-magnitudes-preferred"></span><h2>Preferred Magnitude<a class="headerlink" href="#preferred-magnitude" title="Permalink to this heading"></a></h2>
<p>From the list of computed network magnitudes and the summary magnitude,
<a class="reference internal" href="../../apps/scevent.html#scevent"><span class="std std-ref">scevent</span></a> can automatically determine the preferred magnitude of the
<a class="reference internal" href="../glossary.html#term-event"><span class="xref std std-term">event</span></a>. This may also be done interactively by operators in the
@ -234,18 +311,22 @@ usually referred to as <em>M</em>. The name is configurable.</p>
<div>
<h3><a href="../../index.html">Table of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">Magnitudes</a><ul>
<li><a class="reference internal" href="#">Amplitudes and Magnitudes</a><ul>
<li><a class="reference internal" href="#amplitudes">Amplitudes</a><ul>
<li><a class="reference internal" href="#instrument-simulation">Instrument simulation</a></li>
<li><a class="reference internal" href="#input-data">Input data</a></li>
<li><a class="reference internal" href="#wood-anderson-simulation">Wood-Anderson simulation</a></li>
<li><a class="reference internal" href="#physical-units">Physical units</a></li>
<li><a class="reference internal" href="#amplitude-aliases">Amplitude Aliases</a></li>
<li><a class="reference internal" href="#regionalization">Regionalization</a></li>
</ul>
</li>
<li><a class="reference internal" href="#station-magnitudes">Station Magnitudes</a><ul>
<li><a class="reference internal" href="#station-corrections">Station corrections</a></li>
<li><a class="reference internal" href="#magnitude-aliases">Magnitude Aliases</a></li>
<li><a class="reference internal" href="#concepts-magnitudes-regionalization">Regionalization</a></li>
</ul>
</li>
<li><a class="reference internal" href="#network-magnitudes">Network Magnitudes</a></li>
<li><a class="reference internal" href="#aliases">Aliases</a></li>
<li><a class="reference internal" href="#regionalization">Regionalization</a></li>
<li><a class="reference internal" href="#moment-magnitudes">Moment Magnitudes</a></li>
<li><a class="reference internal" href="#summary-magnitude">Summary Magnitude</a></li>
<li><a class="reference internal" href="#preferred-magnitude">Preferred Magnitude</a></li>
@ -283,7 +364,7 @@ usually referred to as <em>M</em>. The name is configurable.</p>
</a>
<div class="stretched align-center fitted content">
<div>
Version <b>6.9.0</b> Release
Version <b>7.0.0</b> Development
</div>
<div class="copyright">
Copyright &copy; gempa GmbH, GFZ Potsdam.