[seiscomp, scanloc] Install, add .gitignore

This commit is contained in:
2025-10-09 15:07:02 +02:00
commit 20f5301bb1
2848 changed files with 1315858 additions and 0 deletions

View File

@ -0,0 +1,496 @@
/******************************************************************************
* Author: Pete Goodliffe
*
* ----------------------------------------------------------------------------
* Copyright 2002 Pete Goodliffe All rights reserved.
*
* ----------------------------------------------------------------------------
* Purpose: STL-style circular buffer
*
* Formatting changed by <Jan Becker, gempa GmbH> jabe@gempa.de
*****************************************************************************/
#ifndef CIRCULAR_BUFFER_H
#define CIRCULAR_BUFFER_H
#include <exception>
#include <stdexcept>
#include <iterator>
#include <memory>
/******************************************************************************
* Iterators
*****************************************************************************/
/**
* Iterator type for the circular_buffer class.
*
* This one template class provides all variants of forward/reverse
* const/non const iterators through plentiful template magic.
*
* You don't need to instantiate it directly, use the good public functions
* availble in circular_buffer.
*/
template<typename T, //circular_buffer type
//(incl const)
typename T_nonconst, //with any consts
typename elem_type = typename T::value_type> //+ const for const iter
class circular_buffer_iterator {
public:
typedef circular_buffer_iterator<T, T_nonconst, elem_type> self_type;
typedef T cbuf_type;
typedef std::random_access_iterator_tag iterator_category;
typedef typename cbuf_type::value_type value_type;
typedef typename cbuf_type::size_type size_type;
typedef typename cbuf_type::pointer pointer;
typedef typename cbuf_type::const_pointer const_pointer;
typedef typename cbuf_type::reference reference;
typedef typename cbuf_type::const_reference const_reference;
typedef typename cbuf_type::difference_type difference_type;
circular_buffer_iterator(cbuf_type *b, size_type p)
: buf_(b), pos_(p) {}
// Converting a non-const iterator to a const iterator
circular_buffer_iterator(const circular_buffer_iterator<T_nonconst, T_nonconst, typename T_nonconst::value_type> &other)
: buf_(other.buf_), pos_(other.pos_) {}
friend class circular_buffer_iterator<const T, T, const elem_type> ;
// Use compiler generated copy ctor, copy assignment operator and dtor
elem_type &operator*() {
return (*buf_)[pos_];
}
elem_type *operator->() {
return &(operator*());
}
self_type &operator++() {
pos_ += 1;
return *this;
}
self_type operator++(int) {
self_type tmp(*this);
++(*this);
return tmp;
}
self_type &operator--() {
pos_ -= 1;
return *this;
}
self_type operator--(int) {
self_type tmp(*this);
--(*this);
return tmp;
}
self_type operator+(difference_type n) const {
self_type tmp(*this);
tmp.pos_ += n;
return tmp;
}
self_type &operator+=(difference_type n) {
pos_ += n;
return *this;
}
self_type operator-(difference_type n) const {
self_type tmp(*this);
tmp.pos_ -= n;
return tmp;
}
self_type &operator-=(difference_type n) {
pos_ -= n;
return *this;
}
difference_type operator-(const self_type &c) const {
return pos_ - c.pos_;
}
bool operator==(const self_type &other) const {
return pos_ == other.pos_ && buf_ == other.buf_;
}
bool operator!=(const self_type &other) const {
return pos_ != other.pos_ && buf_ == other.buf_;
}
bool operator>(const self_type &other) const {
return pos_ > other.pos_;
}
bool operator>=(const self_type &other) const {
return pos_ >= other.pos_;
}
bool operator<(const self_type &other) const {
return pos_ < other.pos_;
}
bool operator<=(const self_type &other) const {
return pos_ <= other.pos_;
}
private:
cbuf_type *buf_;
size_type pos_;
};
template<typename circular_buffer_iterator_t>
circular_buffer_iterator_t operator+(
const typename circular_buffer_iterator_t::difference_type &a,
const circular_buffer_iterator_t &b) {
return circular_buffer_iterator_t(a) + b;
}
template<typename circular_buffer_iterator_t>
circular_buffer_iterator_t operator-(
const typename circular_buffer_iterator_t::difference_type &a,
const circular_buffer_iterator_t &b) {
return circular_buffer_iterator_t(a) - b;
}
/******************************************************************************
* circular_buffer
*****************************************************************************/
/**
* This class provides a circular buffer in the STL style.
*
* You can add data to the end using the @ref push_back function, read data
* using @ref front() and remove data using @ref pop_front().
*
* The class also provides random access through the @ref operator[]()
* function and its random access iterator. Subscripting the array with
* an invalid (out of range) index number leads to undefined results, both
* for reading and writing.
*
* This class template accepts three template parameters:
* <li> T The type of object contained
* <li> always_accept_data_when_full Determines the behaviour of
* @ref push_back when the buffer is full.
* Set to true new data is always added, the
* old "end" data is thrown away.
* Set to false, the new data is not added.
* No error is returned neither is an
* exception raised.
* <li> Alloc Allocator type to use (in line with other
* STL containers).
*
* @short STL style circule buffer
* @author Pete Goodliffe
* @version 1.00
*/
template<typename T, bool always_accept_data_when_full = true,
typename Alloc = std::allocator<T> >
class circular_buffer {
public:
enum {
version_major = 1, version_minor = 0
};
// Typedefs
typedef circular_buffer<T, always_accept_data_when_full, Alloc> self_type;
typedef Alloc allocator_type;
typedef typename Alloc::value_type value_type;
typedef typename Alloc::pointer pointer;
typedef typename Alloc::const_pointer const_pointer;
typedef typename Alloc::reference reference;
typedef typename Alloc::const_reference const_reference;
typedef typename Alloc::size_type size_type;
typedef typename Alloc::difference_type difference_type;
typedef circular_buffer_iterator<self_type, self_type> iterator;
typedef circular_buffer_iterator<const self_type, self_type,
const value_type> const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
// Lifetime
enum {
default_capacity = 100
};
explicit circular_buffer(size_type capacity = default_capacity)
: array_(alloc_.allocate(capacity))
, array_size_(capacity)
, head_(1)
, tail_(0)
, contents_size_(0) {}
circular_buffer(const circular_buffer &other)
: array_(alloc_.allocate(other.array_size_))
, array_size_(other.array_size_), head_(other.head_)
, tail_(other.tail_), contents_size_(other.contents_size_) {
try {
assign_into(other.begin(), other.end());
}
catch ( ... ) {
destroy_all_elements();
alloc_.deallocate(array_, array_size_);
throw;
}
}
template<class InputIterator>
circular_buffer(InputIterator from, InputIterator to)
: array_(alloc_.allocate(1)), array_size_(1)
, head_(1), tail_(0), contents_size_(0) {
circular_buffer tmp;
tmp.assign_into_reserving(from, to);
swap(tmp);
}
~circular_buffer() {
destroy_all_elements();
alloc_.deallocate(array_, array_size_);
}
circular_buffer &operator=(const self_type &other) {
circular_buffer tmp(other);
swap(tmp);
return *this;
}
void swap(circular_buffer &other) {
std::swap(array_, other.array_);
std::swap(array_size_, other.array_size_);
std::swap(head_, other.head_);
std::swap(tail_, other.tail_);
std::swap(contents_size_, other.contents_size_);
}
allocator_type get_allocator() const {
return alloc_;
}
// Iterators
iterator begin() {
return iterator(this, 0);
}
iterator end() {
return iterator(this, size());
}
const_iterator begin() const {
return const_iterator(this, 0);
}
const_iterator end() const {
return const_iterator(this, size());
}
reverse_iterator rbegin() {
return reverse_iterator(end());
}
reverse_iterator rend() {
return reverse_iterator(begin());
}
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
// Size
size_type size() const {
return contents_size_;
}
size_type capacity() const {
return array_size_;
}
bool empty() const {
return !contents_size_;
}
size_type max_size() const {
return alloc_.max_size();
}
void reserve(size_type new_size) {
if ( capacity() < new_size ) {
circular_buffer tmp(new_size);
tmp.assign_into(begin(), end());
swap(tmp);
}
}
// Accessing
reference front() {
return array_[head_];
}
reference back() {
return array_[tail_];
}
const_reference front() const {
return array_[head_];
}
const_reference back() const {
return array_[tail_];
}
void push_back(const value_type &item) {
size_type next = next_tail();
if ( contents_size_ == array_size_ ) {
if ( always_accept_data_when_full ) {
array_[next] = item;
increment_head();
}
}
else {
alloc_.construct(array_ + next, item);
}
increment_tail();
}
void pop_front() {
size_type destroy_pos = head_;
increment_head();
alloc_.destroy(array_ + destroy_pos);
}
void clear() {
for ( size_type n = 0; n < contents_size_; ++n ) {
alloc_.destroy(array_ + index_to_subscript(n));
}
head_ = 1;
tail_ = contents_size_ = 0;
}
reference operator[](size_type n) {
return at_unchecked(n);
}
const_reference operator[](size_type n) const {
return at_unchecked(n);
}
reference at(size_type n) {
return at_checked(n);
}
const_reference at(size_type n) const {
return at_checked(n);
}
private:
reference at_unchecked(size_type index) const {
return array_[index_to_subscript(index)];
}
reference at_checked(size_type index) const {
if ( index >= contents_size_ ) {
throw std::out_of_range("index out of bounds");
}
return at_unchecked(index);
}
// Rounds an unbounded to an index into array_
size_type normalise(size_type n) const {
return n % array_size_;
}
// Converts external index to an array subscript
size_type index_to_subscript(size_type index) const {
return normalise(index + head_);
}
void increment_tail() {
++contents_size_;
tail_ = next_tail();
}
size_type next_tail() {
return (tail_ + 1 == array_size_) ? 0 : tail_ + 1;
}
void increment_head() {
// precondition: !empty()
++head_;
--contents_size_;
if ( head_ == array_size_ )
head_ = 0;
}
template<typename f_iter>
void assign_into(f_iter from, f_iter to) {
if ( contents_size_ )
clear();
while ( from != to ) {
push_back(*from);
++from;
}
}
template<typename f_iter>
void assign_into_reserving(f_iter from, f_iter to) {
if ( contents_size_ )
clear();
while ( from != to ) {
if ( contents_size_ == array_size_ ) {
reserve(static_cast<size_type>(array_size_ * 1.5));
}
push_back(*from);
++from;
}
}
void destroy_all_elements() {
for ( size_type n = 0; n < contents_size_; ++n ) {
alloc_.destroy(array_ + index_to_subscript(n));
}
}
allocator_type alloc_;
value_type *array_;
size_type array_size_;
size_type head_;
size_type tail_;
size_type contents_size_;
};
template<typename T, bool consume_policy, typename Alloc>
bool operator==(const circular_buffer<T, consume_policy, Alloc> &a,
const circular_buffer<T, consume_policy, Alloc> &b) {
return a.size() == b.size() && std::equal(a.begin(), a.end(), b.begin());
}
template<typename T, bool consume_policy, typename Alloc>
bool operator!=(const circular_buffer<T, consume_policy, Alloc> &a,
const circular_buffer<T, consume_policy, Alloc> &b) {
return a.size() != b.size() || !std::equal(a.begin(), a.end(), b.begin());
}
template<typename T, bool consume_policy, typename Alloc>
bool operator<(const circular_buffer<T, consume_policy, Alloc> &a,
const circular_buffer<T, consume_policy, Alloc> &b) {
return std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end());
}
#endif

View File

@ -0,0 +1,627 @@
/* The MIT License
Copyright (c) 2008, 2009, 2011 by Attractive Chaos <attractor@live.co.uk>
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
/*
An example:
#include "khash.h"
KHASH_MAP_INIT_INT(32, char)
int main() {
int ret, is_missing;
khiter_t k;
khash_t(32) *h = kh_init(32);
k = kh_put(32, h, 5, &ret);
kh_value(h, k) = 10;
k = kh_get(32, h, 10);
is_missing = (k == kh_end(h));
k = kh_get(32, h, 5);
kh_del(32, h, k);
for (k = kh_begin(h); k != kh_end(h); ++k)
if (kh_exist(h, k)) kh_value(h, k) = 1;
kh_destroy(32, h);
return 0;
}
*/
/*
2013-05-02 (0.2.8):
* Use quadratic probing. When the capacity is power of 2, stepping function
i*(i+1)/2 guarantees to traverse each bucket. It is better than double
hashing on cache performance and is more robust than linear probing.
In theory, double hashing should be more robust than quadratic probing.
However, my implementation is probably not for large hash tables, because
the second hash function is closely tied to the first hash function,
which reduce the effectiveness of double hashing.
Reference: http://research.cs.vt.edu/AVresearch/hashing/quadratic.php
2011-12-29 (0.2.7):
* Minor code clean up; no actual effect.
2011-09-16 (0.2.6):
* The capacity is a power of 2. This seems to dramatically improve the
speed for simple keys. Thank Zilong Tan for the suggestion. Reference:
- http://code.google.com/p/ulib/
- http://nothings.org/computer/judy/
* Allow to optionally use linear probing which usually has better
performance for random input. Double hashing is still the default as it
is more robust to certain non-random input.
* Added Wang's integer hash function (not used by default). This hash
function is more robust to certain non-random input.
2011-02-14 (0.2.5):
* Allow to declare global functions.
2009-09-26 (0.2.4):
* Improve portability
2008-09-19 (0.2.3):
* Corrected the example
* Improved interfaces
2008-09-11 (0.2.2):
* Improved speed a little in kh_put()
2008-09-10 (0.2.1):
* Added kh_clear()
* Fixed a compiling error
2008-09-02 (0.2.0):
* Changed to token concatenation which increases flexibility.
2008-08-31 (0.1.2):
* Fixed a bug in kh_get(), which has not been tested previously.
2008-08-31 (0.1.1):
* Added destructor
*/
#ifndef __AC_KHASH_H
#define __AC_KHASH_H
/*!
@header
Generic hash table library.
*/
#define AC_VERSION_KHASH_H "0.2.8"
#include <stdlib.h>
#include <string.h>
#include <limits.h>
/* compiler specific configuration */
#if UINT_MAX == 0xffffffffu
typedef unsigned int khint32_t;
#elif ULONG_MAX == 0xffffffffu
typedef unsigned long khint32_t;
#endif
#if ULONG_MAX == ULLONG_MAX
typedef unsigned long khint64_t;
#else
typedef unsigned long long khint64_t;
#endif
#ifndef kh_inline
#ifdef _MSC_VER
#define kh_inline __inline
#else
#define kh_inline inline
#endif
#endif /* kh_inline */
#ifndef klib_unused
#if (defined __clang__ && __clang_major__ >= 3) || (defined __GNUC__ && __GNUC__ >= 3)
#define klib_unused __attribute__ ((__unused__))
#else
#define klib_unused
#endif
#endif /* klib_unused */
typedef khint32_t khint_t;
typedef khint_t khiter_t;
#define __ac_isempty(flag, i) ((flag[i>>4]>>((i&0xfU)<<1))&2)
#define __ac_isdel(flag, i) ((flag[i>>4]>>((i&0xfU)<<1))&1)
#define __ac_iseither(flag, i) ((flag[i>>4]>>((i&0xfU)<<1))&3)
#define __ac_set_isdel_false(flag, i) (flag[i>>4]&=~(1ul<<((i&0xfU)<<1)))
#define __ac_set_isempty_false(flag, i) (flag[i>>4]&=~(2ul<<((i&0xfU)<<1)))
#define __ac_set_isboth_false(flag, i) (flag[i>>4]&=~(3ul<<((i&0xfU)<<1)))
#define __ac_set_isdel_true(flag, i) (flag[i>>4]|=1ul<<((i&0xfU)<<1))
#define __ac_fsize(m) ((m) < 16? 1 : (m)>>4)
#ifndef kroundup32
#define kroundup32(x) (--(x), (x)|=(x)>>1, (x)|=(x)>>2, (x)|=(x)>>4, (x)|=(x)>>8, (x)|=(x)>>16, ++(x))
#endif
#ifndef kcalloc
#define kcalloc(N,Z) calloc(N,Z)
#endif
#ifndef kmalloc
#define kmalloc(Z) malloc(Z)
#endif
#ifndef krealloc
#define krealloc(P,Z) realloc(P,Z)
#endif
#ifndef kfree
#define kfree(P) free(P)
#endif
static const double __ac_HASH_UPPER = 0.77;
#define __KHASH_TYPE(name, khkey_t, khval_t) \
typedef struct kh_##name##_s { \
khint_t n_buckets, size, n_occupied, upper_bound; \
khint32_t *flags; \
khkey_t *keys; \
khval_t *vals; \
} kh_##name##_t;
#define __KHASH_PROTOTYPES(name, khkey_t, khval_t) \
extern kh_##name##_t *kh_init_##name(void); \
extern void kh_destroy_##name(kh_##name##_t *h); \
extern void kh_clear_##name(kh_##name##_t *h); \
extern khint_t kh_get_##name(const kh_##name##_t *h, khkey_t key); \
extern int kh_resize_##name(kh_##name##_t *h, khint_t new_n_buckets); \
extern khint_t kh_put_##name(kh_##name##_t *h, khkey_t key, int *ret); \
extern void kh_del_##name(kh_##name##_t *h, khint_t x);
#define __KHASH_IMPL(name, SCOPE, khkey_t, khval_t, kh_is_map, __hash_func, __hash_equal) \
SCOPE kh_##name##_t *kh_init_##name(void) { \
return (kh_##name##_t*)kcalloc(1, sizeof(kh_##name##_t)); \
} \
SCOPE void kh_destroy_##name(kh_##name##_t *h) \
{ \
if (h) { \
kfree((void *)h->keys); kfree(h->flags); \
kfree((void *)h->vals); \
kfree(h); \
} \
} \
SCOPE void kh_clear_##name(kh_##name##_t *h) \
{ \
if (h && h->flags) { \
memset(h->flags, 0xaa, __ac_fsize(h->n_buckets) * sizeof(khint32_t)); \
h->size = h->n_occupied = 0; \
} \
} \
SCOPE khint_t kh_get_##name(const kh_##name##_t *h, khkey_t key) \
{ \
if (h->n_buckets) { \
khint_t k, i, last, mask, step = 0; \
mask = h->n_buckets - 1; \
k = __hash_func(key); i = k & mask; \
last = i; \
while (!__ac_isempty(h->flags, i) && (__ac_isdel(h->flags, i) || !__hash_equal(h->keys[i], key))) { \
i = (i + (++step)) & mask; \
if (i == last) return h->n_buckets; \
} \
return __ac_iseither(h->flags, i)? h->n_buckets : i; \
} else return 0; \
} \
SCOPE int kh_resize_##name(kh_##name##_t *h, khint_t new_n_buckets) \
{ /* This function uses 0.25*n_buckets bytes of working space instead of [sizeof(key_t+val_t)+.25]*n_buckets. */ \
khint32_t *new_flags = 0; \
khint_t j = 1; \
{ \
kroundup32(new_n_buckets); \
if (new_n_buckets < 4) new_n_buckets = 4; \
if (h->size >= (khint_t)(new_n_buckets * __ac_HASH_UPPER + 0.5)) j = 0; /* requested size is too small */ \
else { /* hash table size to be changed (shrink or expand); rehash */ \
new_flags = (khint32_t*)kmalloc(__ac_fsize(new_n_buckets) * sizeof(khint32_t)); \
if (!new_flags) return -1; \
memset(new_flags, 0xaa, __ac_fsize(new_n_buckets) * sizeof(khint32_t)); \
if (h->n_buckets < new_n_buckets) { /* expand */ \
khkey_t *new_keys = (khkey_t*)krealloc((void *)h->keys, new_n_buckets * sizeof(khkey_t)); \
if (!new_keys) { kfree(new_flags); return -1; } \
h->keys = new_keys; \
if (kh_is_map) { \
khval_t *new_vals = (khval_t*)krealloc((void *)h->vals, new_n_buckets * sizeof(khval_t)); \
if (!new_vals) { kfree(new_flags); return -1; } \
h->vals = new_vals; \
} \
} /* otherwise shrink */ \
} \
} \
if (j) { /* rehashing is needed */ \
for (j = 0; j != h->n_buckets; ++j) { \
if (__ac_iseither(h->flags, j) == 0) { \
khkey_t key = h->keys[j]; \
khval_t val; \
khint_t new_mask; \
new_mask = new_n_buckets - 1; \
if (kh_is_map) val = h->vals[j]; \
__ac_set_isdel_true(h->flags, j); \
while (1) { /* kick-out process; sort of like in Cuckoo hashing */ \
khint_t k, i, step = 0; \
k = __hash_func(key); \
i = k & new_mask; \
while (!__ac_isempty(new_flags, i)) i = (i + (++step)) & new_mask; \
__ac_set_isempty_false(new_flags, i); \
if (i < h->n_buckets && __ac_iseither(h->flags, i) == 0) { /* kick out the existing element */ \
{ khkey_t tmp = h->keys[i]; h->keys[i] = key; key = tmp; } \
if (kh_is_map) { khval_t tmp = h->vals[i]; h->vals[i] = val; val = tmp; } \
__ac_set_isdel_true(h->flags, i); /* mark it as deleted in the old hash table */ \
} else { /* write the element and jump out of the loop */ \
h->keys[i] = key; \
if (kh_is_map) h->vals[i] = val; \
break; \
} \
} \
} \
} \
if (h->n_buckets > new_n_buckets) { /* shrink the hash table */ \
h->keys = (khkey_t*)krealloc((void *)h->keys, new_n_buckets * sizeof(khkey_t)); \
if (kh_is_map) h->vals = (khval_t*)krealloc((void *)h->vals, new_n_buckets * sizeof(khval_t)); \
} \
kfree(h->flags); /* free the working space */ \
h->flags = new_flags; \
h->n_buckets = new_n_buckets; \
h->n_occupied = h->size; \
h->upper_bound = (khint_t)(h->n_buckets * __ac_HASH_UPPER + 0.5); \
} \
return 0; \
} \
SCOPE khint_t kh_put_##name(kh_##name##_t *h, khkey_t key, int *ret) \
{ \
khint_t x; \
if (h->n_occupied >= h->upper_bound) { /* update the hash table */ \
if (h->n_buckets > (h->size<<1)) { \
if (kh_resize_##name(h, h->n_buckets - 1) < 0) { /* clear "deleted" elements */ \
*ret = -1; return h->n_buckets; \
} \
} else if (kh_resize_##name(h, h->n_buckets + 1) < 0) { /* expand the hash table */ \
*ret = -1; return h->n_buckets; \
} \
} /* TODO: to implement automatically shrinking; resize() already support shrinking */ \
{ \
khint_t k, i, site, last, mask = h->n_buckets - 1, step = 0; \
x = site = h->n_buckets; k = __hash_func(key); i = k & mask; \
if (__ac_isempty(h->flags, i)) x = i; /* for speed up */ \
else { \
last = i; \
while (!__ac_isempty(h->flags, i) && (__ac_isdel(h->flags, i) || !__hash_equal(h->keys[i], key))) { \
if (__ac_isdel(h->flags, i)) site = i; \
i = (i + (++step)) & mask; \
if (i == last) { x = site; break; } \
} \
if (x == h->n_buckets) { \
if (__ac_isempty(h->flags, i) && site != h->n_buckets) x = site; \
else x = i; \
} \
} \
} \
if (__ac_isempty(h->flags, x)) { /* not present at all */ \
h->keys[x] = key; \
__ac_set_isboth_false(h->flags, x); \
++h->size; ++h->n_occupied; \
*ret = 1; \
} else if (__ac_isdel(h->flags, x)) { /* deleted */ \
h->keys[x] = key; \
__ac_set_isboth_false(h->flags, x); \
++h->size; \
*ret = 2; \
} else *ret = 0; /* Don't touch h->keys[x] if present and not deleted */ \
return x; \
} \
SCOPE void kh_del_##name(kh_##name##_t *h, khint_t x) \
{ \
if (x != h->n_buckets && !__ac_iseither(h->flags, x)) { \
__ac_set_isdel_true(h->flags, x); \
--h->size; \
} \
}
#define KHASH_DECLARE(name, khkey_t, khval_t) \
__KHASH_TYPE(name, khkey_t, khval_t) \
__KHASH_PROTOTYPES(name, khkey_t, khval_t)
#define KHASH_INIT2(name, SCOPE, khkey_t, khval_t, kh_is_map, __hash_func, __hash_equal) \
__KHASH_TYPE(name, khkey_t, khval_t) \
__KHASH_IMPL(name, SCOPE, khkey_t, khval_t, kh_is_map, __hash_func, __hash_equal)
#define KHASH_INIT(name, khkey_t, khval_t, kh_is_map, __hash_func, __hash_equal) \
KHASH_INIT2(name, static kh_inline klib_unused, khkey_t, khval_t, kh_is_map, __hash_func, __hash_equal)
/* --- BEGIN OF HASH FUNCTIONS --- */
/*! @function
@abstract Integer hash function
@param key The integer [khint32_t]
@return The hash value [khint_t]
*/
#define kh_int_hash_func(key) (khint32_t)(key)
/*! @function
@abstract Integer comparison function
*/
#define kh_int_hash_equal(a, b) ((a) == (b))
/*! @function
@abstract 64-bit integer hash function
@param key The integer [khint64_t]
@return The hash value [khint_t]
*/
#define kh_int64_hash_func(key) (khint32_t)((key)>>33^(key)^(key)<<11)
/*! @function
@abstract 64-bit integer comparison function
*/
#define kh_int64_hash_equal(a, b) ((a) == (b))
/*! @function
@abstract const char* hash function
@param s Pointer to a null terminated string
@return The hash value
*/
static kh_inline khint_t __ac_X31_hash_string(const char *s)
{
khint_t h = (khint_t)*s;
if (h) for (++s ; *s; ++s) h = (h << 5) - h + (khint_t)*s;
return h;
}
/*! @function
@abstract Another interface to const char* hash function
@param key Pointer to a null terminated string [const char*]
@return The hash value [khint_t]
*/
#define kh_str_hash_func(key) __ac_X31_hash_string(key)
/*! @function
@abstract Const char* comparison function
*/
#define kh_str_hash_equal(a, b) (strcmp(a, b) == 0)
static kh_inline khint_t __ac_Wang_hash(khint_t key)
{
key += ~(key << 15);
key ^= (key >> 10);
key += (key << 3);
key ^= (key >> 6);
key += ~(key << 11);
key ^= (key >> 16);
return key;
}
#define kh_int_hash_func2(k) __ac_Wang_hash((khint_t)key)
/* --- END OF HASH FUNCTIONS --- */
/* Other convenient macros... */
/*!
@abstract Type of the hash table.
@param name Name of the hash table [symbol]
*/
#define khash_t(name) kh_##name##_t
/*! @function
@abstract Initiate a hash table.
@param name Name of the hash table [symbol]
@return Pointer to the hash table [khash_t(name)*]
*/
#define kh_init(name) kh_init_##name()
/*! @function
@abstract Destroy a hash table.
@param name Name of the hash table [symbol]
@param h Pointer to the hash table [khash_t(name)*]
*/
#define kh_destroy(name, h) kh_destroy_##name(h)
/*! @function
@abstract Reset a hash table without deallocating memory.
@param name Name of the hash table [symbol]
@param h Pointer to the hash table [khash_t(name)*]
*/
#define kh_clear(name, h) kh_clear_##name(h)
/*! @function
@abstract Resize a hash table.
@param name Name of the hash table [symbol]
@param h Pointer to the hash table [khash_t(name)*]
@param s New size [khint_t]
*/
#define kh_resize(name, h, s) kh_resize_##name(h, s)
/*! @function
@abstract Insert a key to the hash table.
@param name Name of the hash table [symbol]
@param h Pointer to the hash table [khash_t(name)*]
@param k Key [type of keys]
@param r Extra return code: -1 if the operation failed;
0 if the key is present in the hash table;
1 if the bucket is empty (never used); 2 if the element in
the bucket has been deleted [int*]
@return Iterator to the inserted element [khint_t]
*/
#define kh_put(name, h, k, r) kh_put_##name(h, k, r)
/*! @function
@abstract Retrieve a key from the hash table.
@param name Name of the hash table [symbol]
@param h Pointer to the hash table [khash_t(name)*]
@param k Key [type of keys]
@return Iterator to the found element, or kh_end(h) if the element is absent [khint_t]
*/
#define kh_get(name, h, k) kh_get_##name(h, k)
/*! @function
@abstract Remove a key from the hash table.
@param name Name of the hash table [symbol]
@param h Pointer to the hash table [khash_t(name)*]
@param k Iterator to the element to be deleted [khint_t]
*/
#define kh_del(name, h, k) kh_del_##name(h, k)
/*! @function
@abstract Test whether a bucket contains data.
@param h Pointer to the hash table [khash_t(name)*]
@param x Iterator to the bucket [khint_t]
@return 1 if containing data; 0 otherwise [int]
*/
#define kh_exist(h, x) (!__ac_iseither((h)->flags, (x)))
/*! @function
@abstract Get key given an iterator
@param h Pointer to the hash table [khash_t(name)*]
@param x Iterator to the bucket [khint_t]
@return Key [type of keys]
*/
#define kh_key(h, x) ((h)->keys[x])
/*! @function
@abstract Get value given an iterator
@param h Pointer to the hash table [khash_t(name)*]
@param x Iterator to the bucket [khint_t]
@return Value [type of values]
@discussion For hash sets, calling this results in segfault.
*/
#define kh_val(h, x) ((h)->vals[x])
/*! @function
@abstract Alias of kh_val()
*/
#define kh_value(h, x) ((h)->vals[x])
/*! @function
@abstract Get the start iterator
@param h Pointer to the hash table [khash_t(name)*]
@return The start iterator [khint_t]
*/
#define kh_begin(h) (khint_t)(0)
/*! @function
@abstract Get the end iterator
@param h Pointer to the hash table [khash_t(name)*]
@return The end iterator [khint_t]
*/
#define kh_end(h) ((h)->n_buckets)
/*! @function
@abstract Get the number of elements in the hash table
@param h Pointer to the hash table [khash_t(name)*]
@return Number of elements in the hash table [khint_t]
*/
#define kh_size(h) ((h)->size)
/*! @function
@abstract Get the number of buckets in the hash table
@param h Pointer to the hash table [khash_t(name)*]
@return Number of buckets in the hash table [khint_t]
*/
#define kh_n_buckets(h) ((h)->n_buckets)
/*! @function
@abstract Iterate over the entries in the hash table
@param h Pointer to the hash table [khash_t(name)*]
@param kvar Variable to which key will be assigned
@param vvar Variable to which value will be assigned
@param code Block of code to execute
*/
#define kh_foreach(h, kvar, vvar, code) { khint_t __i; \
for (__i = kh_begin(h); __i != kh_end(h); ++__i) { \
if (!kh_exist(h,__i)) continue; \
(kvar) = kh_key(h,__i); \
(vvar) = kh_val(h,__i); \
code; \
} }
/*! @function
@abstract Iterate over the values in the hash table
@param h Pointer to the hash table [khash_t(name)*]
@param vvar Variable to which value will be assigned
@param code Block of code to execute
*/
#define kh_foreach_value(h, vvar, code) { khint_t __i; \
for (__i = kh_begin(h); __i != kh_end(h); ++__i) { \
if (!kh_exist(h,__i)) continue; \
(vvar) = kh_val(h,__i); \
code; \
} }
/* More conenient interfaces */
/*! @function
@abstract Instantiate a hash set containing integer keys
@param name Name of the hash table [symbol]
*/
#define KHASH_SET_INIT_INT(name) \
KHASH_INIT(name, khint32_t, char, 0, kh_int_hash_func, kh_int_hash_equal)
/*! @function
@abstract Instantiate a hash map containing integer keys
@param name Name of the hash table [symbol]
@param khval_t Type of values [type]
*/
#define KHASH_MAP_INIT_INT(name, khval_t) \
KHASH_INIT(name, khint32_t, khval_t, 1, kh_int_hash_func, kh_int_hash_equal)
/*! @function
@abstract Instantiate a hash map containing 64-bit integer keys
@param name Name of the hash table [symbol]
*/
#define KHASH_SET_INIT_INT64(name) \
KHASH_INIT(name, khint64_t, char, 0, kh_int64_hash_func, kh_int64_hash_equal)
/*! @function
@abstract Instantiate a hash map containing 64-bit integer keys
@param name Name of the hash table [symbol]
@param khval_t Type of values [type]
*/
#define KHASH_MAP_INIT_INT64(name, khval_t) \
KHASH_INIT(name, khint64_t, khval_t, 1, kh_int64_hash_func, kh_int64_hash_equal)
typedef const char *kh_cstr_t;
/*! @function
@abstract Instantiate a hash map containing const char* keys
@param name Name of the hash table [symbol]
*/
#define KHASH_SET_INIT_STR(name) \
KHASH_INIT(name, kh_cstr_t, char, 0, kh_str_hash_func, kh_str_hash_equal)
/*! @function
@abstract Instantiate a hash map containing const char* keys
@param name Name of the hash table [symbol]
@param khval_t Type of values [type]
*/
#define KHASH_MAP_INIT_STR(name, khval_t) \
KHASH_INIT(name, kh_cstr_t, khval_t, 1, kh_str_hash_func, kh_str_hash_equal)
#endif /* __AC_KHASH_H */

View File

@ -0,0 +1,442 @@
/***************************************************************************
* Copyright (C) gempa GmbH *
* All rights reserved. *
* Contact: gempa GmbH (seiscomp-dev@gempa.de) *
* *
* Author: Jan Becker *
* Email: jabe@gempa.de *
* *
* GNU Affero General Public License Usage *
* This file may be used under the terms of the GNU Affero *
* Public License version 3.0 as published by the Free Software Foundation *
* and appearing in the file LICENSE included in the packaging of this *
* file. Please review the following information to ensure the GNU Affero *
* Public License version 3.0 requirements will be met: *
* https://www.gnu.org/licenses/agpl-3.0.html. *
* *
* Other Usage *
* Alternatively, this file may be used in accordance with the terms and *
* conditions contained in a signed written agreement between you and *
* gempa GmbH. *
***************************************************************************/
#ifndef GEMPA_MESSAGESERVER_UTILS_H__
#define GEMPA_MESSAGESERVER_UTILS_H__
#include <seiscomp/core/exceptions.h>
#include <seiscomp/broker/api.h>
#include <vector>
#include <cstdio>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <type_traits>
#include <boost/noncopyable.hpp>
namespace Seiscomp {
namespace Utils {
/**
* @brief The Randomizer class generated random data of arbitrary length.
*
* This class utilized /dev/urandom under Unix. Other operating systems are
* not yet supported. Randomizer is implemented as a singleton. The usage
* is as simple as:
*
* \code
* if ( !Randomizer::Instance().fillData(data, len) )
* cerr << "Failed to generate random data" << endl;
* \endcode
*
* A helper template method Randomizer::fill is provided which takes an
* argument of arbitrary type and fills it with random data.
*
* \code
* int id;
* if ( !Randomizer::Instance().fill(id) )
* cerr << "Failed to generate id" << endl;
* \endcode
*/
class SC_BROKER_API Randomizer {
// ----------------------------------------------------------------------
// Destruction
// ----------------------------------------------------------------------
public:
//! D'tor
~Randomizer();
// ----------------------------------------------------------------------
// Public interface
// ----------------------------------------------------------------------
public:
/**
* @brief Returns the singleton instance.
* @return The singleton instance
*/
static Randomizer &Instance() { return _instance; }
/**
* @brief Fills a value with random data.
* @param target The value to be filled.
* @return true on success, false otherwise
*/
template <typename T>
bool fill(T &target);
/**
* @brief Fills a block of data with random data
* @param data The pointer to the memory block
* @param len The length in bytes of the memory block
* @return true on success, false otherwise
*/
bool fillData(void *data, size_t len);
// ----------------------------------------------------------------------
// Private interface
// ----------------------------------------------------------------------
private:
//! Private constructor
Randomizer();
// ----------------------------------------------------------------------
// Private members
// ----------------------------------------------------------------------
private:
static Randomizer _instance;
FILE *_randomFd;
};
template <typename T>
bool Randomizer::fill(T &target) {
return fillData(&target, sizeof(target));
}
template <typename T>
class BlockingDequeue : private boost::noncopyable {
// ----------------------------------------------------------------------
// Public types
// ----------------------------------------------------------------------
public:
typedef std::unique_lock<std::mutex> lock;
// ----------------------------------------------------------------------
// X'truction
// ----------------------------------------------------------------------
public:
BlockingDequeue();
BlockingDequeue(int n);
~BlockingDequeue();
// ----------------------------------------------------------------------
// Blocking interface
// ----------------------------------------------------------------------
public:
void resize(int n);
bool canPush() const;
bool push(T v);
bool canPop() const;
T pop();
bool pop(T &);
void close();
void reopen();
size_t size() const;
void lockBuffer();
void unlockBuffer();
//! Requires lockBuffer to be called
size_t buffered() const;
//! Requires lockBuffer to be called
T &operator[](size_t idx);
// ----------------------------------------------------------------------
// Private members
// ----------------------------------------------------------------------
private:
volatile int _begin, _end;
volatile size_t _buffered;
volatile bool _closed;
std::vector<T> _buffer;
std::condition_variable _notFull, _notEmpty;
mutable std::mutex _monitor;
};
template <typename T, int IsPtr>
struct BlockingDequeueHelper {};
template <typename T>
struct BlockingDequeueHelper<T,0> {
static void clean(const std::vector<T> &) {}
static T defaultValue() { return T(); }
};
template <typename T>
struct BlockingDequeueHelper<T,1> {
static void clean(const std::vector<T> &b) {
for ( size_t i = 0; i < b.size(); ++i ) {
if ( b[i] ) delete b[i];
}
}
static T defaultValue() { return NULL; }
};
// <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
template <typename T>
BlockingDequeue<T>::BlockingDequeue() :
_begin(0), _end(0),
_buffered(0), _closed(false), _buffer(0)
{}
// <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
template <typename T>
BlockingDequeue<T>::BlockingDequeue(int n) :
_begin(0), _end(0),
_buffered(0), _closed(false), _buffer(n)
{}
// <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
template <typename T>
BlockingDequeue<T>::~BlockingDequeue() {
close();
BlockingDequeueHelper<T, std::is_pointer<T>::value>::clean(_buffer);
}
// <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
template <typename T>
void BlockingDequeue<T>::resize(int n) {
lock lk(_monitor);
_buffer.resize(n);
}
// <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
template <typename T>
bool BlockingDequeue<T>::canPush() const {
lock lk(_monitor);
if ( _closed )
throw Core::GeneralException("Queue has been closed");
return _buffered < _buffer.size();
}
// <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
template <typename T>
bool BlockingDequeue<T>::push(T v) {
lock lk(_monitor);
while (_buffered == _buffer.size() && !_closed)
_notFull.wait(lk);
if ( _closed ) {
_notEmpty.notify_all();
return false;
}
_buffer[_end] = v;
_end = (_end+1) % _buffer.size();
++_buffered;
_notEmpty.notify_all();
return true;
}
// <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
template <typename T>
bool BlockingDequeue<T>::canPop() const {
lock lk(_monitor);
if ( _closed )
throw Core::GeneralException("Queue has been closed");
return _buffered > 0;
}
// <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
template <typename T>
T BlockingDequeue<T>::pop() {
lock lk(_monitor);
while (_buffered == 0 && !_closed) {
_notEmpty.wait(lk);
}
if ( _closed )
throw Core::GeneralException("Queue has been closed");
T v = _buffer[_begin];
_buffer[_begin] = BlockingDequeueHelper<T, std::is_pointer<T>::value>::defaultValue();
_begin = (_begin+1) % _buffer.size();
--_buffered;
_notFull.notify_all();
return v;
}
// <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
template <typename T>
bool BlockingDequeue<T>::pop(T &v) {
lock lk(_monitor);
if ( _closed )
throw Core::GeneralException("Queue has been closed");
if ( _buffered > 0 ) {
v = _buffer[_begin];
_buffer[_begin] = BlockingDequeueHelper<T, std::is_pointer<T>::value>::defaultValue();
_begin = (_begin+1) % _buffer.size();
--_buffered;
_notFull.notify_all();
return true;
}
else
return false;
}
// <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
template <typename T>
void BlockingDequeue<T>::close() {
lock lk(_monitor);
if ( _closed ) return;
_closed = true;
_notFull.notify_all();
_notEmpty.notify_all();
}
// <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
template <typename T>
void BlockingDequeue<T>::reopen() {
lock lk(_monitor);
_closed = false;
if ( !_buffered )
_notFull.notify_all();
else
_notEmpty.notify_all();
}
// <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
template <typename T>
size_t BlockingDequeue<T>::size() const {
lock lk(_monitor);
return _buffered;
}
// <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
template <typename T>
void BlockingDequeue<T>::lockBuffer() {
_monitor.lock();
}
// <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
template <typename T>
void BlockingDequeue<T>::unlockBuffer() {
_monitor.unlock();
}
// <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
template <typename T>
size_t BlockingDequeue<T>::buffered() const {
return _buffered;
}
// <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
template <typename T>
T &BlockingDequeue<T>::operator[](size_t idx) {
idx += _begin;
if ( idx >= _buffer.size() )
idx -= _buffer.size();
return _buffer[idx];
}
// <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
}
}
#endif